CC BY 4.0 · SynOpen 2023; 07(04): 535-547 DOI: 10.1055/s-0042-1751510
paper
Virtual Collection Electrochemical Organic Synthesis
Oxidative C–H Sulfonylation of Hydrazones Enabled by Electrochemistry
,
Ping-Ping Lei‡
,
Er-Jun Hao
,
Bei-Ning Zhang
,
Hong-Hao Zhou
,
Wan-Wan Li
,
Hai-Ming Guo∗
We are grateful for financial support from the National Natural Science Foundation of China (22007028, U22A20378, and 22071046), the Natural Science Foundation of Henan Province (232300421126), and the Henan Normal University Initiation Fund (5101039170920). The authors also thank the Henan Key Laboratory of Organic Functional Molecules and Drug Innovation for financial support.
Abstract
An efficient electrochemical oxidative C(sp2 )–H sulfonylation of aldehyde hydrazones is described. A variety of sodium sufinates or sulfinic acids participate effectively in this protocol, which provides facile access to an array of alkyl and aromatic sulfonylated hydrazones with up to 96% yield. Large-scale synthesis and product derivatization show the potential utility of this methodology. Preliminary mechanistic investigations including radical-inhibition, electricity on/off experiments, and cyclic voltammetry support a radical pathway.
Key words
electrochemical synthesis -
radical -
sulfonylation -
hydrazones -
sulfinic acid
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751510.
Supporting Information
Publikationsverlauf
Eingereicht: 04. August 2023
Angenommen nach Revision: 15. September 2023
Artikel online veröffentlicht: 25. Oktober 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Navada SC,
Silverman LR.
Expert Rev. Anticancer Ther. 2016; 16: 805
1b
Devendar P,
Yang G.-F.
Top. Curr. Chem. 2017; 375: 82
1c
Hofman K,
Liu N.-W,
Manolikakes G.
Eur. J. Org. Chem. 2018; 11852
1d
Zhao C,
Rakesh KP,
Ravidar L,
Fang W.-Y,
Qin H.-L.
Eur. J. Med. Chem. 2019; 162: 679
1e
Takeda Y,
Kuroki K,
Chinen T,
Kitagawa D.
Cell Struct. Funct. 2020; 45: 57
1f
Wang N.-Z,
Saidhareddy P,
Jiang X.-F.
Nat. Prod. Rep. 2020; 37: 246
1g
Bharti R,
Yamini,
Bhardwaj VK,
Reddy CB,
Purohit R,
Das P.
Bioorg. Chem. 2021; 112: 104860
2a
Wang M,
Zhao J.-Y,
Jiang X.-F.
ChemSusChem 2019; 12: 3064
2b
Ye S.-Q,
Zheng D.-Q,
Wu J,
Qiu G.
Chem. Commun. 2019; 55: 2214
2c
Zhang J,
Xie W.-L,
Ye S.-Q,
Wu J.
Org. Chem. Front. 2019; 6: 2254
2d
Chen S.-H,
Li Y.-P,
Wang M,
Jiang X.-F.
Green Chem. 2020; 22: 322
2e
Meng Y.-Y,
Wang M,
Jiang X.-F.
Angew. Chem. Int. Ed. 2020; 59: 1346
2f
Ye S.-Q,
Zhou K.-D,
Rojsitthisak P,
Wu J.
Org. Chem. Front. 2020; 7: 14
3a
Nielsen M,
Jacobsen CB,
Paixão MW,
Holub N,
Jørgensen KA.
J. Am. Chem. Soc. 2009; 131: 10581
3b
Yan J,
Cheo HW,
Teo WK,
Shi X,
Wu H,
Idres SB,
Deng L.-W,
Wu J.
J. Am. Chem. Soc. 2020; 142: 11357
4a
Meyers CY,
Malte AM,
Matthews WS.
J. Am. Chem. Soc. 1969; 91: 7510
4b
Söderman SC,
Schwan AL.
J. Org. Chem. 2012; 77: 10978
5a
van Leusen AM,
Hoogenboom BE,
Siderius H.
Tetrahedron Lett. 1972; 2369
5b
van Leusen AM,
Wildeman J,
Oldenziel OH.
J. Org. Chem. 1977; 42: 1153
6a
Julia M,
Paris J.-M.
Tetrahedron Lett. 1973; 4833
6b
Srimani D,
Leitus G,
Ben-David Y,
Milstein D.
Angew. Chem. Int. Ed. 2014; 53: 11092
6c
Wang W,
Wang B.
Chem. Commun. 2017; 53: 10124
7a
Rollas S,
Küçükgüzel SG.
Molecules 2007; 12: 1910
7b
de Oliveira KN,
Costa P,
Santin JR,
Mazzambani L,
Bürger C,
Mora C,
Nunes RJ,
de Souza MM.
Bioorg. Med. Chem. 2011; 19: 4295
7c
Narasimhan B,
Sharma S.
Curr. Med. Chem. 2012; 19: 569
7d
Negi VJ,
Sharma AK,
Negi JS,
Ra V.
Int. J. Pharm. Chem. 2012; 4: 100
7e
LeGoff G,
Ouazzani J.
Bioorg. Med. Chem. 2014; 22: 6529
7f
Popiołek Ł.
Med. Chem. Res. 2017; 26: 287
8
Edrees MM,
Farghaly TA,
El-Hag FA,
Abdalla MM.
Eur. J. Med. Chem. 2010; 45: 5702
9
Bhandari SV,
Bothara KG,
Raut MK,
Patil AA,
Sarkate AP,
Mokale VJ.
Bioorg. Med. Chem. 2008; 16: 1822
10
Kaushik D,
Khan SA,
Chawla G,
Kumar S.
Eur. J. Med. Chem. 2010; 45: 3943
11
Siddiqui SM,
Salahuddin A,
Azam A.
Eur. J. Med. Chem. 2012; 49: 411
12
Terzioglu N,
Gürsoy A.
Eur. J. Med. Chem. 2003; 38: 781
13a
Xu P,
Li W,
Xie J,
Zhu C.
Acc. Chem. Res. 2018; 51: 484
13b
Lazny R,
Nodzewska A.
Chem. Rev. 2010; 110: 1386
14a
Ye Z,
Wang F,
Li Y,
Zhang F.
Green Chem. 2018; 20: 5271
14b
Wang Z,
Liu Q,
Ji X,
Deng G.-J,
Huang H.
ACS Catal. 2020; 10: 154
15a
Xie J,
Zhang T,
Chen F,
Mehrkens N,
Rominger F,
Rudolph M,
Hashmi AS. K.
Angew. Chem. Int. Ed. 2016; 55: 2934
15b
Xu P,
Wang G,
Zhu Y,
Li W,
Cheng Y,
Li S,
Zhu C.
Angew. Chem. Int. Ed. 2016; 55: 2939
15c
Xu P,
Wu Z,
Zhou N,
Zhu C.
Org. Lett. 2016; 18: 1143
15d
Zheng T,
Zhang S,
Zhang Y,
Li Y,
Ni M,
Feng B.
J. Org. Chem. 2017; 82: 9384
15e
Xu X,
Liu F.
Org. Chem. Front. 2017; 4: 2306
15f
Zhang M,
Duan Y,
Li W,
Xu P,
Cheng J,
Yu S,
Zhu C.
Org. Lett. 2016; 18: 5356
15g
Xu X,
Zhang J,
Xia H,
Wu J.
Org. Biomol. Chem. 2018; 16: 1227
16a
Cheng X,
Lei A.-W,
Mei T.-S,
Xu H.-C,
Xu K,
Zeng C.-C.
CCS Chem. 2022; 4: 1120
16b
Ma C,
Fang P,
Liu D,
Jiao K.-J,
Gao P.-S,
Qiu H,
Mei T.-S.
Chem. Sci. 2021; 12: 12866
16c
Yang Q.-L,
Fang P,
Mei T.-S.
Chin. J. Chem. 2018; 36: 338
16d
Lian F,
Xu K,
Zeng C.-C.
Sci. China: Chem. 2023; 66: 540
17
Ye Z.-H,
Wang F,
Li Y,
Zhang F.-Z.
Green Chem. 2018; 20: 5271
18
Shi Y,
Wang K,
Ding Y,
Xie Y.
Org. Biomol. Chem. 2022; 20: 9362
19
Fu Z.-M,
Ye J.-S,
Huang J.-M.
Org. Lett. 2022; 24: 5874
20
Ma Z.-X,
Hu X,
Li Y.-N,
Liang D.-Q,
Dong Y,
Wang B.-L,
Li W.-L.
Org. Chem. Front. 2021; 8: 2208
21
Wen J.-W,
Zhang L.-F,
Yang X.-T,
Niu C,
Wang S.-F,
Wei W,
Sun X.-J,
Yang J.-J,
Wang H.
Green Chem. 2019; 21: 3597
22
Xu Z.-N,
Li Y.-H,
Mo G.-Q,
Zheng Y.-C,
Zeng S.-G,
Sun P.-H,
Ruan Z.-X.
Org. Lett. 2020; 22: 4016
23 During the preparation of our manuscript, Hajra et al. published an elegant work similar to part of our work, see:
Sarkar B,
Ghosh P,
Hajra A.
Org. Lett. 2023; 25: 3440
24
Ghosh AK,
Mondal S,
Hajra A.
Org. Lett. 2020; 22: 2771
25
Xu J,
Shen C,
Qin X,
Wu J,
Zhang P.-F,
Liu X.-G.
J. Org. Chem. 2021; 86: 3706
26 CCDC 2281964 (6x ) and 2281962 (6ar ) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
27a
Sun B,
Tian H.-X,
Ni Z.-G,
Huang P.-Y,
Ding H,
Li B.-Q,
Jin C,
Wu C.-L,
Shen R.-P.
Org. Chem. Front. 2022; 9: 3669
27b
Ma J,
Yang J.-J,
Yan K.-L,
Luo B.-J,
Huang K.-X,
Wu Z.-L,
Zhou Y.-M,
Zhu S.-Y,
Zhao X.-E,
Wen J.-W.
SynOpen 2023; 7: 272
28a
Shi Y,
Wang K,
Ding Y.-X,
Xie Y.-Y.
Org. Biomol. Chem. 2022; 20: 9362
28b
Fu Z.-M,
Ye J.-S,
Huang J.-M.
Org. Lett. 2022; 24: 5874
28c
Dubrovskiy AV,
Larock RC.
J. Org. Chem. 2012; 77: 11232
28d
Li X.-D,
Golz C,
Alcarazo M.
Angew. Chem. Int. Ed. 2021; 60: 6943
29a
Kou M.-T,
Wei Z.-Q,
Li Z,
Xu B.
Org. Lett. 2022; 24: 8514
29b
Bogonda G,
Patil DV,
Kim HY,
Oh K.
Org. Lett. 2019; 21: 3774
29c
Meyer AU,
Jäger S,
Hari DP,
König B.
Adv. Synth. Catal. 2015; 357: 2050
29d
Zhang X,
Ang EC. X,
Yang Z,
Kee CW,
Tan C.-H.
Nature 2022; 604: 298