CC BY 4.0 · SynOpen 2023; 07(04): 535-547
DOI: 10.1055/s-0042-1751510
paper
Virtual Collection Electrochemical Organic Synthesis

Oxidative C–H Sulfonylation of Hydrazones Enabled by Electrochemistry

Qi-Liang Yang
,
Ping-Ping Lei
,
Er-Jun Hao
,
Bei-Ning Zhang
,
Hong-Hao Zhou
,
Wan-Wan Li
,
Hai-Ming Guo
We are grateful for financial support from the National Natural Science Foundation of China (22007028, U22A20378, and 22071046), the Natural Science Foundation of Henan Province (232300421126), and the Henan Normal University Initiation Fund (5101039170920). The authors also thank the Henan Key Laboratory of Organic Functional Molecules and Drug Innovation for financial support.


Abstract

An efficient electrochemical oxidative C(sp2)–H sulfonylation of aldehyde hydrazones is described. A variety of sodium sufinates or sulfinic acids participate effectively in this protocol, which provides facile access to an array of alkyl and aromatic sulfonylated hydrazones with up to 96% yield. Large-scale synthesis and product derivatization show the potential utility of this methodology. Preliminary mechanistic investigations including radical-inhibition, electricity on/off experiments, and cyclic voltammetry support a radical pathway.

Supporting Information



Publication History

Received: 04 August 2023

Accepted after revision: 15 September 2023

Article published online:
25 October 2023

© 2023. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Navada SC, Silverman LR. Expert Rev. Anticancer Ther. 2016; 16: 805
    • 1b Devendar P, Yang G.-F. Top. Curr. Chem. 2017; 375: 82
    • 1c Hofman K, Liu N.-W, Manolikakes G. Eur. J. Org. Chem. 2018; 11852
    • 1d Zhao C, Rakesh KP, Ravidar L, Fang W.-Y, Qin H.-L. Eur. J. Med. Chem. 2019; 162: 679
    • 1e Takeda Y, Kuroki K, Chinen T, Kitagawa D. Cell Struct. Funct. 2020; 45: 57
    • 1f Wang N.-Z, Saidhareddy P, Jiang X.-F. Nat. Prod. Rep. 2020; 37: 246
    • 1g Bharti R, Yamini, Bhardwaj VK, Reddy CB, Purohit R, Das P. Bioorg. Chem. 2021; 112: 104860
    • 2a Wang M, Zhao J.-Y, Jiang X.-F. ChemSusChem 2019; 12: 3064
    • 2b Ye S.-Q, Zheng D.-Q, Wu J, Qiu G. Chem. Commun. 2019; 55: 2214
    • 2c Zhang J, Xie W.-L, Ye S.-Q, Wu J. Org. Chem. Front. 2019; 6: 2254
    • 2d Chen S.-H, Li Y.-P, Wang M, Jiang X.-F. Green Chem. 2020; 22: 322
    • 2e Meng Y.-Y, Wang M, Jiang X.-F. Angew. Chem. Int. Ed. 2020; 59: 1346
    • 2f Ye S.-Q, Zhou K.-D, Rojsitthisak P, Wu J. Org. Chem. Front. 2020; 7: 14
    • 3a Nielsen M, Jacobsen CB, Paixão MW, Holub N, Jørgensen KA. J. Am. Chem. Soc. 2009; 131: 10581
    • 3b Yan J, Cheo HW, Teo WK, Shi X, Wu H, Idres SB, Deng L.-W, Wu J. J. Am. Chem. Soc. 2020; 142: 11357
    • 4a Meyers CY, Malte AM, Matthews WS. J. Am. Chem. Soc. 1969; 91: 7510
    • 4b Söderman SC, Schwan AL. J. Org. Chem. 2012; 77: 10978
    • 5a van Leusen AM, Hoogenboom BE, Siderius H. Tetrahedron Lett. 1972; 2369
    • 5b van Leusen AM, Wildeman J, Oldenziel OH. J. Org. Chem. 1977; 42: 1153
    • 6a Julia M, Paris J.-M. Tetrahedron Lett. 1973; 4833
    • 6b Srimani D, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2014; 53: 11092
    • 6c Wang W, Wang B. Chem. Commun. 2017; 53: 10124
    • 7a Rollas S, Küçükgüzel SG. Molecules 2007; 12: 1910
    • 7b de Oliveira KN, Costa P, Santin JR, Mazzambani L, Bürger C, Mora C, Nunes RJ, de Souza MM. Bioorg. Med. Chem. 2011; 19: 4295
    • 7c Narasimhan B, Sharma S. Curr. Med. Chem. 2012; 19: 569
    • 7d Negi VJ, Sharma AK, Negi JS, Ra V. Int. J. Pharm. Chem. 2012; 4: 100
    • 7e LeGoff G, Ouazzani J. Bioorg. Med. Chem. 2014; 22: 6529
    • 7f Popiołek Ł. Med. Chem. Res. 2017; 26: 287
  • 8 Edrees MM, Farghaly TA, El-Hag FA, Abdalla MM. Eur. J. Med. Chem. 2010; 45: 5702
  • 9 Bhandari SV, Bothara KG, Raut MK, Patil AA, Sarkate AP, Mokale VJ. Bioorg. Med. Chem. 2008; 16: 1822
  • 10 Kaushik D, Khan SA, Chawla G, Kumar S. Eur. J. Med. Chem. 2010; 45: 3943
  • 11 Siddiqui SM, Salahuddin A, Azam A. Eur. J. Med. Chem. 2012; 49: 411
  • 12 Terzioglu N, Gürsoy A. Eur. J. Med. Chem. 2003; 38: 781
    • 14a Ye Z, Wang F, Li Y, Zhang F. Green Chem. 2018; 20: 5271
    • 14b Wang Z, Liu Q, Ji X, Deng G.-J, Huang H. ACS Catal. 2020; 10: 154
    • 15a Xie J, Zhang T, Chen F, Mehrkens N, Rominger F, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 2934
    • 15b Xu P, Wang G, Zhu Y, Li W, Cheng Y, Li S, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 2939
    • 15c Xu P, Wu Z, Zhou N, Zhu C. Org. Lett. 2016; 18: 1143
    • 15d Zheng T, Zhang S, Zhang Y, Li Y, Ni M, Feng B. J. Org. Chem. 2017; 82: 9384
    • 15e Xu X, Liu F. Org. Chem. Front. 2017; 4: 2306
    • 15f Zhang M, Duan Y, Li W, Xu P, Cheng J, Yu S, Zhu C. Org. Lett. 2016; 18: 5356
    • 15g Xu X, Zhang J, Xia H, Wu J. Org. Biomol. Chem. 2018; 16: 1227
    • 16a Cheng X, Lei A.-W, Mei T.-S, Xu H.-C, Xu K, Zeng C.-C. CCS Chem. 2022; 4: 1120
    • 16b Ma C, Fang P, Liu D, Jiao K.-J, Gao P.-S, Qiu H, Mei T.-S. Chem. Sci. 2021; 12: 12866
    • 16c Yang Q.-L, Fang P, Mei T.-S. Chin. J. Chem. 2018; 36: 338
    • 16d Lian F, Xu K, Zeng C.-C. Sci. China: Chem. 2023; 66: 540
  • 17 Ye Z.-H, Wang F, Li Y, Zhang F.-Z. Green Chem. 2018; 20: 5271
  • 18 Shi Y, Wang K, Ding Y, Xie Y. Org. Biomol. Chem. 2022; 20: 9362
  • 19 Fu Z.-M, Ye J.-S, Huang J.-M. Org. Lett. 2022; 24: 5874
  • 20 Ma Z.-X, Hu X, Li Y.-N, Liang D.-Q, Dong Y, Wang B.-L, Li W.-L. Org. Chem. Front. 2021; 8: 2208
  • 21 Wen J.-W, Zhang L.-F, Yang X.-T, Niu C, Wang S.-F, Wei W, Sun X.-J, Yang J.-J, Wang H. Green Chem. 2019; 21: 3597
  • 22 Xu Z.-N, Li Y.-H, Mo G.-Q, Zheng Y.-C, Zeng S.-G, Sun P.-H, Ruan Z.-X. Org. Lett. 2020; 22: 4016
  • 23 During the preparation of our manuscript, Hajra et al. published an elegant work similar to part of our work, see: Sarkar B, Ghosh P, Hajra A. Org. Lett. 2023; 25: 3440
  • 24 Ghosh AK, Mondal S, Hajra A. Org. Lett. 2020; 22: 2771
  • 25 Xu J, Shen C, Qin X, Wu J, Zhang P.-F, Liu X.-G. J. Org. Chem. 2021; 86: 3706
  • 26 CCDC 2281964 (6x) and 2281962 (6ar) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
    • 27a Sun B, Tian H.-X, Ni Z.-G, Huang P.-Y, Ding H, Li B.-Q, Jin C, Wu C.-L, Shen R.-P. Org. Chem. Front. 2022; 9: 3669
    • 27b Ma J, Yang J.-J, Yan K.-L, Luo B.-J, Huang K.-X, Wu Z.-L, Zhou Y.-M, Zhu S.-Y, Zhao X.-E, Wen J.-W. SynOpen 2023; 7: 272
    • 28a Shi Y, Wang K, Ding Y.-X, Xie Y.-Y. Org. Biomol. Chem. 2022; 20: 9362
    • 28b Fu Z.-M, Ye J.-S, Huang J.-M. Org. Lett. 2022; 24: 5874
    • 28c Dubrovskiy AV, Larock RC. J. Org. Chem. 2012; 77: 11232
    • 28d Li X.-D, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2021; 60: 6943
    • 29a Kou M.-T, Wei Z.-Q, Li Z, Xu B. Org. Lett. 2022; 24: 8514
    • 29b Bogonda G, Patil DV, Kim HY, Oh K. Org. Lett. 2019; 21: 3774
    • 29c Meyer AU, Jäger S, Hari DP, König B. Adv. Synth. Catal. 2015; 357: 2050
    • 29d Zhang X, Ang EC. X, Yang Z, Kee CW, Tan C.-H. Nature 2022; 604: 298