CC BY 4.0 · SynOpen 2023; 07(03): 362-370
DOI: 10.1055/s-0042-1751479
paper

Multi-step Flow Synthesis of the Anthelmintic Drug Praziquantel

Manjinder Singh Phull
a   Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
e   Cipla Limited Cipla House, Peninsula Business Park, Ganpatrao Kadam Marg, Lower Parel, Mumbai-400013, India
,
Surender Singh Jadav
c   Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
d   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
,
Chander Singh Bohara
e   Cipla Limited Cipla House, Peninsula Business Park, Ganpatrao Kadam Marg, Lower Parel, Mumbai-400013, India
,
Rambabu Gundla
a   Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
,
Prathama S Mainkar
b   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
d   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
› Author Affiliations
Authors are thankful to the Council of Scientific and Industrial Research (CSIR) and CSIR-Indian Institute of Chemical Technology for providing funding and research infrastructure facilities.


Abstract

Praziquantel (PZQ; Brand name: Biltricide) is categorized as an anthelminthic drug, and it is used for the treatment of Schistosomiasis and other parasitic infections. The World Health Organization (WHO) has classified it as one of the essential and emergency medicines needed across the globe. The price of PZQ formulated product depends on the associated method of preparation, along with cost of raw materials. A precise and reliable method for the preparation of PZQ using a flow-chemistry approach is described in this study using phenylethylamine as the starting material. The main objective of the present study is to identify a new economical route for the synthesis of PZQ that could decrease the production time drastically from days to minutes and be transferred to large-scale production. Simultaneously, the purity of the obtained intermediates in essential steps, as single or continuous process, determined by HPLC analysis were more than 90% pure. The continuous preparation process of PZQ in the current study was achieved in less time (ca. 3–4 h) than using conventional methods (ca. 3–4 days). Moreover, the required quantity of key intermediate dimethoxyethanamine is 40–50% less than in existing methods.

Supporting Information



Publication History

Received: 01 April 2023

Accepted after revision: 14 June 2023

Article published online:
14 August 2023

© 2023. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 USP, Promoting the Quality of Medicines (PQM). Product Information Report: Praziquantel, Rockville, Maryland, 2019.
  • 2 ‘Antiparasitic Drugs Market Analysis’(accessed June 2, 2022), can be found under: https://www.coherentmarketinsights.com/market-insight/antiparasitic-drugs-market-3782
  • 3 ‘Drugs for Schistosomiasis Market Research Report’ (accessed June 2, 2022), can be found under: https://dataintelo.com/report/global-drugs-for-schistosomiasis-market/
  • 4 WHO Model List of Essential Medicines - 22nd List, 2021.
  • 5 ‘Praziquantel Price of 8 Brands’ (accessed June 2, 2022), can be found under: https://www.medindia.net/drug-price/praziquantel.htm
  • 6 N’goran EK, Yalkinoglu Ö, Kourany-Lefoll E, Tappert A, Hayward B, Yin X, Bezuidenhout D, Huber E, Aka ND, Ouattara M, Bagchus W. Front. Trop. Dis. 2021; 2: 679373
  • 7 Reich MR, Govindaraj R. Health Policy (New. York) 1998; 44: 1-18
  • 8 Di Filippo M, Baumann M. Eur. J. Org. Chem. 2020; 6199
    • 9a Brzozowski M, Forni JA, Savage GP, Polyzos A. Chem. Commun. 2015; 51: 334
    • 9b Cole KP, Argentine MD, Conder EW, Vaid RK, Feng P, Jia M, Huang P, Liu P, Sun B, Tadayon S, Zhu C. Org. Process Res. Dev. 2020; 24: 2043
    • 9c Tsoung J, Wang Y, Djuric WS. React. Chem. Eng. 2017; 2: 458
    • 9d Baghbanzadeh M, Glasnov TN, Kappe CO. J. Flow Chem. 2013; 3: 109
    • 10a Banks A, Breen GF, Caine D, Carey JS, Drake C, Forth MA, Gladwin A, Guelfi S, Hayes JF, Maragni P, Morgan DO. Org. Process Res. Dev. 2009; 13: 1130
    • 10b Damon DB, Dugger RW, Hubbs SE, Scott JM, Scott RW. Org. Process Res. Dev. 2006; 10: 472
    • 10c Yalgin H, Luart D, Len C. J. Flow Chem. 2016; 6: 80
    • 11a Borra S, Chandrasekhar D, Adhikary S, Rasala S, Gokulnath S, Maurya RA. J. Org. Chem. 2017; 82: 2249
    • 11b Schröder F, Erdmann N, Noël T, Luque R, Van der Eycken EV. Adv. Synth. Catal. 2015; 357: 3141
    • 11c Pucci A, Albano G, Pollastrini M, Lucci A, Colalillo M, Oliva F, Evangelisti C, Marelli M, Santalucia D, Mandoli A. Catalysts 2020; 10: 434
    • 12a Fuli Z, Zhezhou Y, Rusheng B, Weiwei X, Hua B. WO2016127350A1, 2016
    • 12b Su-dong J, Shin D, Hong J, Cheol-jin A, Sang-yong S, Eun-joo H, Heung-jae K. KR20020076486A, 2022
    • 13a Yuste F, Pallás Y, Barrios H, Ortíz B, Sánchez-Obregón R. J. Heterocycl. Chem. 1986; 23: 189
    • 13b Shunfu Y, Jun Y, Zhiping Y, Hongzhen F. CN105622606A, 2016
    • 13c Liuhua X, Mingming L, Xing G, Jiagen L. CN103739601A, 2014
    • 13d Feng W, Jiasheng L, Junguo H, Shuangxi L, Zikun W, Xiaofei X, Hongqiang P. CN106866663A, 2017
    • 13e Jingpeng L, Nan Z, Guangshun L. CN105294679A, 2016
    • 13f Jianying Z. CN105622604A, 2016
    • 13g Kim JH, Lee YS, Kim CS. Tetrahedron 1998; 54: 7395
    • 13h Kim JH, Lee YS, Kim CS. Heterocycles 1998; 48: 2279
    • 13i Liu JF, Tung R, Harbeson SL. US8889687B2. Nov 18, 2014
    • 13j Roszkowski P, Maurin JK, Czarnocki Z. Tetrahedron: Asymmetry 2006; 17: 1415
    • 13k Fuli Z, Zhezhou Y. CN107151244A, 2019
    • 14a Pohlke R. US4049659A, 1994
    • 14b Yuhua S, Furong L, Shunfu Y, Ping X. CN1683346A, 2009
    • 14c Congyong Y, Watch R, Tao Z. CN103059018A, 2016
    • 14d Dömling A. WO2009115333A1, 2009
    • 15a Berkowitz WF, John TV. J. Org. Chem. 1984; 49: 5269
    • 15b Dhawle PP, Giri AS. G. Pharma Chem. 2018; 10: 215
    • 15c Eberhardt L, Waechtler A, Maillard SB. D, Lehmann O. WO2017036577, 2017
    • 16a Levinson, Wansong Y. CN103539796A, 2013
    • 16b Shou H, He Z, Peng G, Su W, Yu J. Org. Biomol. Chem. 2021; 19: 4507
  • 17 El-Fayyoumy S, Mansour W, Todd MH. Tetrahedron Lett. 2006; 47: 1287
    • 18a Miaogen S, Xiaoli X. CN105153157A, 2015
    • 18b Balaya L, Manjathuru M, Derambala Y, Vausdeva PK, Arylmoli T. US Patent 8754215B2, 2014
  • 19 Valenti G, Tinnemans P, Baglai I, Noorduin WL, Kaptein B, Leeman M, Ter Horst JH, Kellogg RM. Angew. Chem. Int. Ed. 2021; 60: 5279 ; Angew. Chem. 2021, 133, 5339
    • 20a Buglioni L, Raymenants F, Slattery A, Zondag SD. A, Noël T. Chem. Rev. 2021; 122: 2752
    • 20b Govaerts S, Nyuchev A, Noël T. J. Flow Chem. 2020; 10: 13
    • 20c Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 20d Visscher F, Van der Schaaf J, Nijhuis TA, Schouten JC. Chem. Eng. Res. Des. 2013; 91: 1923
    • 20e Adekiya TA, Kumar P, Kondiah PP, Pillay V, Choonara YE. Expert Opin. Ther. Pat. 2021; 31: 851
    • 20f Dong Z, Wen Z, Zhao F, Kuhn S, Noël T. Chem. Eng. Sci.: X 2021; 10: 100097
    • 20g Bin LX. W, Yongcheng L, Gen L, Chuan Y, Shuangxi L. CN111072656A, 2020
  • 21 Laurent SA. L, Boissier J, Coslédan F, Gornitzka H, Robert A, Meunier B. Eur. J. Org. Chem. 2008; 895