Synthesis 2024; 56(11): 1719-1726
DOI: 10.1055/s-0042-1751463
paper
New Trends in Organic Synthesis from Chinese Chemists

Boryl Radical-Promoted Deoxygenative Alkylation of Benzyl Acetates

Nan-Nan Liu
,
Xuan-Chen Wan
,
Li-Wen Hui
,
Feng-Lian Zhang
,
Yi-Feng Wang
We thank the National Natural Science Foundation of China (21971226, 22171253), Natural Science Foundation of Anhui Province (2108085MB59), and the Fundamental Research Funds for the Central Universities (WK2060000017) for financial support of this research.


Abstract

Deoxygenative alkylation of benzyl alcohols was realized by using acetate as the alcohol activation group. The C–O bond homolysis is achieved by a boryl radical-promoted β-scission process. The strategy is amenable to a variety of benzyl alcohols, including primary, secondary, and more challenging tertiary alcohols. The synthetic practicability was demonstrated by a gram-scale one-pot reaction.

Supporting Information



Publication History

Received: 23 March 2023

Accepted after revision: 12 May 2023

Article published online:
27 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Pichon MM, Hazelard D, Compain P. Eur. J. Org. Chem. 2019; 6320
    • 1b Herrmann JM, König B. Eur. J. Org. Chem. 2013; 7017
    • 2a Anwar K, Merkens K, Aguilar Troyano FJ, Gómez-Suárez A. Eur. J. Org. Chem. 2022; e202200330
    • 2b Crespi S, Fagnoni M. Chem. Rev. 2020; 120: 9790
    • 2c Villo P, Shatskiy A, Kärkäs MD, Lundberg H. Angew. Chem. Int. Ed. 2023; 62: e202211952
    • 3a Stache EE, Ertel AB, Rovis T, Doyle AG. ACS Catal. 2018; 8: 11134
    • 3b Cao D, Chen Z, Lv L, Zeng H, Peng Y, Li C.-J. iScience 2020; 23: 101419
    • 3c Li W.-D, Wu Y, Li S.-J, Jiang Y.-Q, Li Y.-L, Lan Y, Xia J.-B. J. Am. Chem. Soc. 2022; 144: 8551
    • 3d Diéguez HR, López A, Domingo V, Arteaga JF, Dobado JA, Herrador MM, Quílez del Moral JF, Barrero AF. J. Am. Chem. Soc. 2010; 132: 254
    • 3e Zheng X, Dai X.-J, Yuan H.-Q, Ye C.-X, Ma J, Huang P.-Q. Angew. Chem. Int. Ed. 2013; 52: 3494
    • 3f Suga T, Ukaji Y. Org. Lett. 2018; 20: 7846
    • 3g Xie H, Guo J, Wang Y.-Q, Wang K, Guo P, Su P.-F, Wang X, Shu X.-Z. J. Am. Chem. Soc. 2020; 142: 16787
    • 3h Xie H, Wang S, Wang Y, Guo P, Shu X.-Z. ACS Catal. 2022; 12: 1018
    • 4a Pedley JB, Naylor RD, Kirby SP. Thermochemical Data of Organic Compounds, 2nd ed. Chapman and Hall; New York: 1986
    • 4b Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
    • 5a Barton DH. R, McCombie SW. J. Chem. Soc., Perkin Trans. 1 1975; 1574
    • 5b Barrett AG. M, Prokopiou PA, Barton DH. R. J. Chem. Soc., Perkin Trans. 1 1981; 1510
    • 5c Barton DH. R, Crich D, Löbberding A, Zard SZ. Tetrahedron 1986; 42: 2329
    • 5d Crich D, Quintero L. Chem. Rev. 1989; 89: 1413
    • 6a Barton DH. R, Jacob M. Tetrahedron Lett. 1998; 39: 1331
    • 6b Spiegel DA, Wiberg KB, Schacherer LN, Medeiros MR, Wood JL. J. Am. Chem. Soc. 2005; 127: 12513
    • 6c Ueng S.-H, Makhlouf Brahmi M, Derat É, Fensterbank L, Lacôte E, Malacria M, Curran DP. J. Am. Chem. Soc. 2008; 130: 10082
    • 6d Chenneberg L, Baralle A, Daniel M, Fensterbank L, Goddard J.-P, Ollivier C. Adv. Synth. Catal. 2014; 356: 2756
    • 8a Friese FW, Studer A. Angew. Chem. Int. Ed. 2019; 58: 9561
    • 8b Wu J, Bär RM, Guo L, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 18830
  • 9 Lackner GL, Quasdorf KW, Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
    • 10a Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DW. C, Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
    • 10b Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 13862
    • 10c Abbas SY, Zhao P, Overman LE. Org. Lett. 2018; 20: 868
    • 10d Guo L, Song F, Zhu S, Li H, Chu L. Nat. Commun. 2018; 9: 4543
    • 10e Yan X.-B, Li C.-L, Jin W.-J, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529
    • 10f Gao M, Sun D, Gong H. Org. Lett. 2019; 21: 1645
    • 10g Guo L, Tu H.-Y, Zhu S, Chu L. Org. Lett. 2019; 21: 4771
    • 10h Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2019; 141: 820
    • 10i Guo P, Wang K, Jin W.-J, Xie H, Qi L, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 513
    • 10j Li M, Liu T, Li J, He H, Dai H, Xie J. J. Org. Chem. 2021; 86: 12386
    • 10k Ma W.-Y, Han G.-Y, Kang S, Pang X, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 15930
    • 12a Rackl D, Kais V, Kreitmeier P, Reiser O. Beilstein J. Org. Chem. 2014; 10: 2157
    • 12b Kolusu SR. N, Nappi M. Chem. Sci. 2022; 13: 6982
  • 13 Wei Y, Ben-zvi B, Diao T. Angew. Chem. Int. Ed. 2021; 60: 9433
  • 14 Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Angew. Chem. Int. Ed. 2020; 59: 10859
  • 15 Han J.-B, Guo A, Tang X.-Y. Chem. Eur. J. 2019; 25: 2989
    • 16a Zhang L, Koreeda M. J. Am. Chem. Soc. 2004; 126: 13190
    • 16b Lam K, Markó IE. Org. Lett. 2011; 13: 406
    • 16c Tian X, Karl TA, Reiter S, Yakubov S, de Vivie-Riedle R, König B, Barham JP. Angew. Chem. Int. Ed. 2021; 60: 20817
  • 17 Peng T.-Y, Zhang F.-L, Wang Y.-F. Acc. Chem. Res. 2023; 56: 169
  • 18 Peng T.-Y, Xu Z.-Y, Zhang F.-L, Li B, Xu W.-P, Fu Y, Wang Y.-F. Angew. Chem. Int. Ed. 2022; 61: e202201329
  • 19 Roberts BP. Chem. Soc. Rev. 1999; 28: 25
  • 20 Griller D, Ingold KU. Acc. Chem. Res. 1980; 13: 317
  • 21 Yu Y.-J, Zhang F.-L, Peng T.-Y, Wang C.-L, Cheng J, Chen C, Houk KN, Wang Y.-F. Science 2021; 371: 1232
    • 22a Lalevée J, Blanchard N, Tehfe M.-A, Chany A.-C, Fouassier J.-P. Chem. Eur. J. 2010; 16: 12920
    • 22b Barth F, Achrainer F, Pütz AM, Zipse H. Chem. Eur. J. 2017; 23: 13455
    • 23a Dai W, McFadden TR, Curran DP, Früchtl HA, Walton JC. J. Am. Chem. Soc. 2018; 140: 15868
    • 23b Walton JC, Dai W, Curran DP. J. Org. Chem. 2020; 85: 4248