CC BY 4.0 · Pharmaceutical Fronts 2022; 04(02): e43-e60
DOI: 10.1055/s-0042-1751036
Review Article

Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications

Yan-Qi Zhao
1   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
2   University of Chinese Academy of Sciences, Beijing, People's Republic of China
,
Li-Jun Li
1   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
2   University of Chinese Academy of Sciences, Beijing, People's Republic of China
,
Er-Fen Zhou
1   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
3   School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
,
Jiang-Yue Wang
1   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
4   School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
,
Ying Wang
1   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
2   University of Chinese Academy of Sciences, Beijing, People's Republic of China
,
Lin-Miao Guo
1   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
2   University of Chinese Academy of Sciences, Beijing, People's Republic of China
,
Xin-Xin Zhang
1   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
2   University of Chinese Academy of Sciences, Beijing, People's Republic of China
› Author Affiliations
Funding We acknowledge the financial support of the Chinese Pharmacopoeia Commission (Grant No. 2021Y19), the National Natural Science Foundation of China (Grant No. 81973250), and the Natural Science Foundation of Shanghai (Grant No. 21ZR1475800).


Abstract

Lipid-based nanocarriers have been extensively investigated for drug delivery due to their advantages including biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. However, the shortcomings of traditional lipid-based nanocarriers such as insufficient targeting, capture by the reticuloendothelial system, and fast elimination limit the efficiency of drug delivery and therapeutic efficacy. Therefore, a series of multifunctional lipid-based nanocarriers have been developed to enhance the accumulation of drugs in the lesion site, aiming for improved diagnosis and treatment of various diseases. In this review, we summarized the advances and applications of lipid-based nanocarriers from traditional to novel functional lipid preparations, including liposomes, stimuli-responsive lipid-based nanocarriers, ionizable lipid nanoparticles, lipid hybrid nanocarriers, as well as biomembrane-camouflaged nanoparticles, and further discussed the challenges and prospects of this system. This exploration may give a complete idea viewing the lipid-based nanocarriers as a promising choice for drug delivery system, and fuel the advancement of pharmaceutical products by materials innovation and nanotechnology.



Publication History

Received: 31 March 2022

Accepted: 18 May 2022

Article published online:
04 July 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004; 303 (5665): 1818-1822
  • 2 Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20 (02) 101-124
  • 3 Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q. Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomater Sci 2021; 9 (15) 5092-5115
  • 4 Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013; 65 (01) 104-120
  • 5 Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - a systematic review of in vitro data. Eur J Pharm Biopharm 2014; 87 (01) 1-18
  • 6 Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem 2019; 12 (07) 908-931
  • 7 Agrawal M, Saraf S, Saraf S. et al. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321: 372-415
  • 8 Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 2021; 11 (03) 748-787
  • 9 Xing H, Hwang K, Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 2016; 6 (09) 1336-1352
  • 10 Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4 (02) 145-160
  • 11 Alving CR, Beck Z, Karasavva N, Matyas GR, Rao M. HIV-1, lipid rafts, and antibodies to liposomes: implications for anti-viral-neutralizing antibodies. Mol Membr Biol 2006; 23 (06) 453-465
  • 12 Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater 2021; 6 (12) 1078-1094
  • 13 Ando H, Ishida T. An RNAi therapeutic, DFP-10825, for intraperitoneal and intrapleural malignant cancers. Adv Drug Deliv Rev 2020; 154–155: 27-36
  • 14 Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 2014; 66: 110-116
  • 15 Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 1964; 8: 660-668
  • 16 Zakaria S, Gamal-Eldeen AM, El-Daly SM, Saleh S. Synergistic apoptotic effect of Doxil ® and aminolevulinic acid-based photodynamic therapy on human breast adenocarcinoma cells. Photodiagn Photodyn Ther 2014; 11 (02) 227-238
  • 17 Porche DJ. Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care 1996; 7 (02) 55-59
  • 18 Phuphanich S, Maria B, Braeckman R, Chamberlain M. A pharmacokinetic study of intra-CSF administered encapsulated cytarabine (DepoCyt) for the treatment of neoplastic meningitis in patients with leukemia, lymphoma, or solid tumors as part of a phase III study. J Neurooncol 2007; 81 (02) 201-208
  • 19 Passero Jr FC, Grapsa D, Syrigos KN, Saif MW. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev Anticancer Ther 2016; 16 (07) 697-703
  • 20 Lamb YN, Scott LJ. Liposomal irinotecan: a review in metastatic pancreatic adenocarcinoma. Drugs 2017; 77 (07) 785-792
  • 21 Frampton JE. Liposomal irinotecan: a review in metastatic pancreatic adenocarcinoma. Drugs 2020; 80 (10) 1007-1018
  • 22 Lambrechts M, O'Brien MJ, Savoie FH, You Z. Liposomal extended-release bupivacaine for postsurgical analgesia. Patient Prefer Adherence 2013; 7: 885-890
  • 23 Kaye AD, Armstead-Williams C, Hyatali F. et al. Exparel for postoperative pain management: a comprehensive review. Curr Pain Headache Rep 2020; 24 (11) 73
  • 24 Hu D, Onel E, Singla N, Kramer WG, Hadzic A. Pharmacokinetic profile of liposome bupivacaine injection following a single administration at the surgical site. Clin Drug Investig 2013; 33 (02) 109-115
  • 25 Tong YC, Kaye AD, Urman RD. Liposomal bupivacaine and clinical outcomes. Best Pract Res Clin Anaesthesiol 2014; 28 (01) 15-27
  • 26 Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134: 57-78
  • 27 Kierstead PH, Okochi H, Venditto VJ. et al. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J Control Release 2015; 213: 1-9
  • 28 Fernandes DA, Fernandes DD, Gradinaru CC, Kolios MC. In vitro studies of multifunctional perfluorocarbon nanoemulsions for cancer therapy and imaging. Biophys J 2016; 110 (3, Suppl 1): 503A
  • 29 Gang C, Kaikai W, Pengkai W. et al. Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy. Nano Res 2018; 11: 3746-3761
  • 30 Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter 2016; 12 (11) 2826-2841
  • 31 Sahu P, Das D, Mishra VK, Kashaw V, Kashaw SK. Nanoemulsion: a novel eon in cancer chemotherapy. Mini Rev Med Chem 2017; 17 (18) 1778-1792
  • 32 Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Curr Pharm Des 2017; 23 (17) 2504-2531
  • 33 Thompson KA, Goodale DB. The recent development of propofol (DIPRIVAN). Intensive Care Med 2000; 26 (Suppl. 04) S400-S404
  • 34 Baker MT, Naguib M. Propofol: the challenges of formulation. Anesthesiology 2005; 103 (04) 860-876
  • 35 Lee EH, Lee SH, Park DY. et al. Physicochemical properties, pharmacokinetics, and pharmacodynamics of a reformulated microemulsion propofol in rats. Anesthesiology 2008; 109 (03) 436-447
  • 36 Navari RM, Mosier MC. Crossover safety study of aprepitant: 2-min injection vs 30-min infusion in cancer patients receiving emetogenic chemotherapy. OncoTargets Ther 2019; 12: 3277-3284
  • 37 Ottoboni T, Lauw M, Keller MR. et al. HTX-019 via 2-min injection or 30-min infusion in healthy subjects. Future Oncol 2019; 15 (08) 865-874
  • 38 Navari RM. Safety profile of HTX-019 administered as an intravenous push in cancer patients: a retrospective review. Expert Opin Drug Saf 2020; 19 (02) 205-210
  • 39 Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: types, properties and applications in drug delivery. IET Nanobiotechnol 2021; 15 (01) 19-27
  • 40 Ma M, Hao Y, Liu N. et al. A novel lipid-based nanomicelle of docetaxel: evaluation of antitumor activity and biodistribution. Int J Nanomedicine 2012; 7: 3389-3398
  • 41 Musacchio T, Torchilin VP. Recent developments in lipid-based pharmaceutical nanocarriers. Front Biosci 2011; 16 (04) 1388-1412
  • 42 Bahadori F, Topçu G, Eroğlu MS, Onyüksel H. A new lipid-based nano formulation of vinorelbine. AAPS PharmSciTech 2014; 15 (05) 1138-1148
  • 43 Onyüksel H, Jeon E, Rubinstein I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells. Cancer Lett 2009; 274 (02) 327-330
  • 44 Dagar A, Kuzmis A, Rubinstein I, Sekosan M, Onyuksel H. VIP-targeted cytotoxic nanomedicine for breast cancer. Drug Deliv Transl Res 2012; 2 (06) 454-462
  • 45 Onyüksel H, Mohanty PS, Rubinstein I. VIP-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: a novel targeted nanomedicine for breast cancer. Int J Pharm 2009; 365 (1–2): 157-161
  • 46 Aquib M, Farooq MA, Banerjee P. et al. Targeted and stimuli-responsive mesoporous silica nanoparticles for drug delivery and theranostic use. J Biomed Mater Res A 2019; 107 (12) 2643-2666
  • 47 Liu J, Huang Y, Kumar A. et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2014; 32 (04) 693-710
  • 48 Jin Y, Song L, Su Y. et al. Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules 2011; 12 (10) 3460-3468
  • 49 Pafiti K, Cui Z, Adlam D, Hoyland J, Freemont AJ, Saunders BR. Hydrogel Composites containing sacrificial collapsed hollow particles as dual action pH-responsive biomaterials. Biomacromolecules 2016; 17 (07) 2448-2458
  • 50 Du Y, Chen W, Zheng M, Meng F, Zhong Z. pH-sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials 2012; 33 (29) 7291-7299
  • 51 Du JZ, Du XJ, Mao CQ, Wang J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 2011; 133 (44) 17560-17563
  • 52 Ren D, Kratz F, Wang SW. Protein nanocapsules containing doxorubicin as a pH-responsive delivery system. Small 2011; 7 (08) 1051-1060
  • 53 Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 2016; 85: 152-167
  • 54 Lee JM, Park H, Oh KT, Lee ES. pH-Responsive hyaluronated liposomes for docetaxel delivery. Int J Pharm 2018; 547 (1–2): 377-384
  • 55 Soares DC, de Oliveira MC, dos Santos RG. et al. Liposomes radiolabeled with 159Gd-DTPA-BMA: preparation, physicochemical characterization, release profile and in vitro cytotoxic evaluation. Eur J Pharm Sci 2011; 42 (05) 462-469
  • 56 Li N, Cai H, Jiang L. et al. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl Mater Interfaces 2017; 9 (08) 6865-6877
  • 57 Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol 2013; 5 (01) 96-107
  • 58 Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 2012; 64 (09) 866-884
  • 59 Chen M, Miao Y, Qian K. et al. Detachable liposomes combined immunochemotherapy for enhanced triple-negative breast cancer treatment through reprogramming of tumor-associated macrophages. Nano Lett 2021; 21 (14) 6031-6041
  • 60 Lee S, Song SJ, Lee J, Ha TH, Choi JS. Cathepsin B-responsive liposomes for controlled anticancer drug delivery in Hep G2 cells. Pharmaceutics 2020; 12 (09) 876
  • 61 Ji T, Li S, Zhang Y. et al. An MMP-2 responsive liposome integrating antifibrosis and chemotherapeutic drugs for enhanced drug perfusion and efficacy in pancreatic cancer. ACS Appl Mater Interfaces 2016; 8 (05) 3438-3445
  • 62 Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13 (11) 813-827
  • 63 Candiani G, Pezzoli D, Ciani L, Chiesa R, Ristori S. Bioreducible liposomes for gene delivery: from the formulation to the mechanism of action. PLoS One 2010; 5 (10) e13430
  • 64 Liu J, Pang Y, Huang W. et al. Redox-responsive polyphosphate nanosized assemblies: a smart drug delivery platform for cancer therapy. Biomacromolecules 2011; 12 (06) 2407-2415
  • 65 Fu H, Shi K, Hu G. et al. Tumor-targeted paclitaxel delivery and enhanced penetration using TAT-decorated liposomes comprising redox-responsive poly(ethylene glycol). J Pharm Sci 2015; 104 (03) 1160-1173
  • 66 Anguela XM, High KA. Entering the modern era of gene therapy. Annu Rev Med 2019; 70: 273-288
  • 67 Schlich M, Palomba R, Costabile G. et al. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. Bioeng Transl Med 2021; 6 (02) e10213
  • 68 Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009; 8 (02) 129-138
  • 69 Pilkington EH, Suys EJA, Trevaskis NL. et al. From influenza to COVID-19: lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater 2021; 131: 16-40
  • 70 Mukai H, Ogawa K, Kato N, Kawakami S. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metab Pharmacokinet 2022; 44: 100450
  • 71 Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: current perspectives. Adv Drug Deliv Rev 2020; 154–155: 37-63
  • 72 Saw PE, Song EW. siRNA therapeutics: a clinical reality. Sci China Life Sci 2020; 63 (04) 485-500
  • 73 Ross-Thriepland D, Bornot A, Butler L. et al. Arrayed CRISPR screening identifies novel targets that enhance the productive delivery of mRNA by MC3-based lipid nanoparticles. SLAS Discov 2020; 25 (06) 605-617
  • 74 Han X, Zhang H, Butowska K. et al. An ionizable lipid toolbox for RNA delivery. Nat Commun 2021; 12 (01) 7233
  • 75 Lamb YN. BNT162b2 mRNA COVID-19 vaccine: first approval. Drugs 2021; 81 (04) 495-501
  • 76 Candela M, Luconi V, Vecchio A. Impact of the COVID-19 pandemic on the Internet latency: a large-scale study. Comput Netw 2020; 182: 107495
  • 77 Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 2021; 20 (11) 817-838
  • 78 Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17 (04) 261-279
  • 79 Dhaliwal HK, Fan Y, Kim J, Amiji MM. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol Pharm 2020; 17 (06) 1996-2005
  • 80 He S, Fan W, Wu N. et al. Lipid-based liquid crystalline nanoparticles facilitate cytosolic delivery of siRNA via structural transformation. Nano Lett 2018; 18 (04) 2411-2419
  • 81 Rosenblum D, Gutkin A, Kedmi R. et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv 2020; 6 (47) eabc9450
  • 82 Dahlman JE, Barnes C, Khan O. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol 2014; 9 (08) 648-655
  • 83 Lin YX, Wang Y, Ding J. et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci Transl Med 2021; 13 (599) eaba9772
  • 84 Maier MA, Jayaraman M, Matsuda S. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther 2013; 21 (08) 1570-1578
  • 85 Zhang HW. A bright future for lipid nanoparticles in gene therapy. Cell Gene Ther Insights 2021; 7 (06) 755-758
  • 86 Jayaraman M, Ansell SM, Mui BL. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl 2012; 51 (34) 8529-8533
  • 87 Gregoriadis G. Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 1995; 13 (12) 527-537
  • 88 Lee SM, Ahn RW, Chen F. et al. Biological evaluation of pH-responsive polymer-caged nanobins for breast cancer therapy. ACS Nano 2010; 4 (09) 4971-4978
  • 89 Lee SM, Chen H, Dettmer CM, O'Halloran TV, Nguyen ST. Polymer-caged lipsomes: a pH-responsive delivery system with high stability. J Am Chem Soc 2007; 129 (49) 15096-15097
  • 90 Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine (Lond) 2006; 2 (01) 8-21
  • 91 Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2 (12) 751-760
  • 92 Hokmabad VR, Davaran S, Aghazadeh M, Alizadeh E, Salehi R, Ramazani A. A comparison of the effects of silica and hydroxyapatite nanoparticles on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/chitosan nanofibrous scaffolds for bone tissue engineering. Tissue Eng Regen Med 2018; 15 (06) 735-750
  • 93 Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B Mater Biol Med 2019; 7 (48) 7639-7655
  • 94 Asthana S, Jaiswal AK, Gupta PK, Dube A, Chourasia MK. Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid-polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B. Eur J Pharm Biopharm 2015; 89: 62-73
  • 95 Yang P, Zhang L, Wang T. et al. Doxorubicin and edelfosine combo-loaded lipid-polymer hybrid nanoparticles for synergistic anticancer effect against drug-resistant osteosarcoma. OncoTargets Ther 2020; 13: 8055-8067
  • 96 Li J, Xu W, Yuan X. et al. Polymer-lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells. Int J Nanomedicine 2017; 12: 6909-6921
  • 97 He Z, Zhang Y, Feng N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater Sci Eng C 2020; 106: 110298
  • 98 Song Y, Huang Z, Liu X. et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice. Nanomedicine (Lond) 2019; 15 (01) 13-24
  • 99 Zhang Q, Dehaini D, Zhang Y. et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 2018; 13 (12) 1182-1190
  • 100 Pitchaimani A, Nguyen TDT, Aryal S. Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials 2018; 160: 124-137
  • 101 Zhou X, Miao Y, Wang Y. et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J Extracell Vesicles 2022; 11 (03) e12198
  • 102 Miao Y, Yang Y, Guo L. et al. Cell membrane-camouflaged nanocarriers with biomimetic deformability of erythrocytes for ultralong circulation and enhanced cancer therapy. ACS Nano 2022; 16 (04) 6527-6540
  • 103 Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol 2011; 8 (03) 207-227
  • 104 Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50 (01) 161-177
  • 105 Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target 2012; 20 (10) 813-830
  • 106 Musielak E, Feliczak-Guzik A, Nowak I. Synthesis and potential applications of lipid nanoparticles in medicine. Materials (Basel) 2022; 15 (02) 682
  • 107 Souto EB, Almeida AJ, Müller RH. Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery:structure, protection and skin effects. J Biomed Nanotechnol 2007; 3 (04) 317-331
  • 108 Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines (Basel) 2021; 9 (04) 359
  • 109 Azhar Shekoufeh Bahari L, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull 2016; 6 (02) 143-151
  • 110 Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current trends in cancer nanotheranostics: metallic, polymeric, and lipid-based systems. Pharmaceutics 2019; 11 (01) 22
  • 111 Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12 (01) 62-76
  • 112 Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 2008; 34 (12) 1394-1405
  • 113 Talegaonkar S, Bhattacharyya A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech 2019; 20 (03) 121
  • 114 Dumont C, Bourgeois S, Fessi H, Jannin V. Lipid-based nanosuspensions for oral delivery of peptides, a critical review. Int J Pharm 2018; 541 (1–2): 117-135
  • 115 Puglia C, Offerta A, Carbone C, Bonina F, Pignatello R, Puglisi G. Lipid nanocarriers (LNC) and their applications in ocular drug delivery. Curr Med Chem 2015; 22 (13) 1589-1602
  • 116 Sguizzato M, Esposito E, Cortesi R. Lipid-based nanosystems as a tool to overcome skin barrier. Int J Mol Sci 2021; 22 (15) 8319
  • 117 Araujo VHS, Delello Di Filippo L, Duarte JL. et al. Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Crit Rev Microbiol 2021; 47 (01) 79-90
  • 118 Lauterbach A, Müller-Goymann CC. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm 2015; 97 (Pt A): 152-163
  • 119 Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004; 56 (09) 1257-1272
  • 120 de Oliveira IF, Barbosa EJ, Peters MCC. et al. Cutting-edge advances in therapy for the posterior segment of the eye: solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm 2020; 589: 119831
  • 121 Suresh PK, Sah AK. Patent perspectives for corticosteroids based ophthalmic therapeutics. Recent Pat Drug Deliv Formul 2014; 8 (03) 206-223
  • 122 Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 2014; 86 (01) 7-22
  • 123 Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: a current overview of in vivo studies. Acta Pharm Sin B 2021; 11 (04) 925-940
  • 124 Costa CP, Barreiro S, Moreira JN. et al. In vitro studies on nasal formulations of nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN). Pharmaceuticals (Basel) 2021; 14 (08) 711
  • 125 Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020; 149: 192-217
  • 126 Agrawal M, Saraf S, Saraf S. et al. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin Drug Deliv 2018; 15 (06) 589-617
  • 127 Stefanov SR, Andonova VY. Lipid nanoparticulate drug delivery systems: recent advances in the treatment of skin disorders. Pharmaceuticals (Basel) 2021; 14 (11) 1083
  • 128 Mahmoud RA, Hussein AK, Nasef GA, Mansour HF. Oxiconazole nitrate solid lipid nanoparticles: formulation, in-vitro characterization and clinical assessment of an analogous loaded carbopol gel. Drug Dev Ind Pharm 2020; 46 (05) 706-716
  • 129 Balguri SP, Adelli GR, Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm 2016; 109: 224-235
  • 130 Dobreva M, Stefanov S, Andonova V. Natural lipids as structural components of solid lipid nanoparticles and nanostructured lipid carriers for topical delivery. Curr Pharm Des 2020; 26 (36) 4524-4535
  • 131 Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7: 587997
  • 132 Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharm Sci 2018; 112: 159-167
  • 133 Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release 2011; 155 (03) 344-357
  • 134 Soundharraj P, Dhinasekaran D, Aruna P, Ganesan S. Facile synthesis of biomass silica-silver colloidal nanoparticles and its application as highly sensitive fluorescent biosensor. Surf Interfaces 2021; 23: 101010
  • 135 Loh XJ, Lee TC, Dou Q, Deen GR. Utilising inorganic nanocarriers for gene delivery. Biomater Sci 2016; 4 (01) 70-86
  • 136 Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019; 2019: 1-26
  • 137 Carvalho BG, Ceccato BT, Michelon M, Han SW, de la Torre LG. Advanced microfluidic technologies for lipid nano-microsystems from synthesis to biological application. Pharmaceutics 2022; 14 (01) 141
  • 138 Bukhari SI, Imam SS, Ahmad MZ. et al. Recent progress in lipid nanoparticles for cancer theranostics: opportunity and challenges. Pharmaceutics 2021; 13 (06) 840
  • 139 Esim O, Hascicek C. Lipid-coated nanosized drug delivery systems for an effective cancer therapy. Curr Drug Deliv 2021; 18 (02) 147-161
  • 140 Kong WH, Bae KH, Jo SD, Kim JS, Park TG. Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharm Res 2012; 29 (02) 362-374
  • 141 Liu W, He Z, Liang JG, Zhu YL, Xu HB, Yang XL. Preparation and characterization of novel fluorescent nanocomposite particles: CdSe/ZnS core-shell quantum dots loaded solid lipid nanoparticles. J Biomed Mater Res A 2008; 84 (04) 1018-1025
  • 142 Khan MW, Zhao P, Khan A. et al. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int J Nanomedicine 2019; 14: 3753-3771
  • 143 Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 2014; 209: 8-39
  • 144 Chan HK, Kwok PCL. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 2011; 63 (06) 406-416
  • 145 Pellegrino J, Schulte LR, De la Cruz J, Stoldt C. Membrane processes in nanoparticle production. J Membr Sci 2017; 522: 245-256
  • 146 Toh M-R, Chiu GNC. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci 2013; 8 (02) 88-95
  • 147 Yu JY, Chuesiang P, Shin GH, Park HJ. Post-processing techniques for the improvement of liposome stability. Pharmaceutics 2021; 13 (07) 1023
  • 148 Álvarez-Benedicto E, Farbiak L, Márquez Ramírez M. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater Sci 2022; 10 (02) 549-559
  • 149 Chang C, Meikle TG, Drummond CJ, Yang Y, Conn CE. Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin. Soft Matter 2021; 17 (12) 3306-3313
  • 150 Milane L, Amiji M. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Deliv Transl Res 2021; 11 (04) 1309-1315
  • 151 Barenholz Y. Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160 (02) 117-134
  • 152 Wood LS. Liposomal anthracycline administration and toxicity management: a nursing perspective. Semin Oncol 2004; 31 (6, Suppl 13): 182-190
  • 153 Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 2013; 73 (09) 919-934
  • 154 Kim L, Glantz MJ. Neoplastic meningitis. Curr Treat Options Oncol 2001; 2 (06) 517-527
  • 155 Glück S, Chadderton A, Ho AD. The selective uptake of benzoporphyrin derivative mono-acid ring A results in differential cell kill of multiple myeloma cells in vitro. Photochem Photobiol 1996; 63 (06) 846-853
  • 156 Kato M, Manabe A. Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int (Roma) 2018; 60 (01) 4-12
  • 157 de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet 2018; 57 (10) 1229-1254
  • 158 Kantarjian HM, Kadia TM, DiNardo CD, Welch MA, Ravandi F. Acute myeloid leukemia: treatment and research outlook for 2021 and the MD Anderson approach. Cancer 2021; 127 (08) 1186-1207
  • 159 Suresh G, Manjunath K, Venkateswarlu V, Satyanarayana V. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS PharmSciTech 2007; 8 (01) 24
  • 160 Shegokar R, Singh KK, Müller RH. Production & stability of stavudine solid lipid nanoparticles–from lab to industrial scale. Int J Pharm 2011; 416 (02) 461-470
  • 161 Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 2013; 453 (01) 142-156
  • 162 Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci 2015; 10 (04) 255-274
  • 163 Kamiya S, Yamada M, Kurita T, Miyagishima A, Arakawa M, Sonobe T. Preparation and stabilization of nifedipine lipid nanoparticles. Int J Pharm 2008; 354 (1–2): 242-247
  • 164 Buse J, El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine (Lond) 2010; 5 (08) 1237-1260
  • 165 Wang J, He W, Cheng L. et al. A modified thin film method for large scale production of dimeric artesunate phospholipid liposomes and comparison with conventional approaches. Int J Pharm 2022; 619: 121714
  • 166 Sugikawa K, Kadota T, Yasuhara K, Ikeda A. Anisotropic self-assembly of citrate-coated gold nanoparticles on fluidic liposomes. Angew Chem Int Ed Engl 2016; 55 (12) 4059-4063
  • 167 Shen Z, Loe DT, Fisher A, Kröger M, Rouge JL, Li Y. Polymer stiffness governs template mediated self-assembly of liposome-like nanoparticles: simulation, theory and experiment. Nanoscale 2019; 11 (42) 20179-20193
  • 168 Sheshachala S, Grösche M, Scherr T. et al. Segregation of dispersed silica nanoparticles in microfluidic water-in-oil droplets: a kinetic study. ChemPhysChem 2020; 21 (10) 1070-1078
  • 169 Dutta K, Bochicchio D, Ribbe AE. et al. Symbiotic self-assembly strategy toward lipid-encased cross-linked polymer nanoparticles for efficient gene silencing. ACS Appl Mater Interfaces 2019; 11 (28) 24971-24983
  • 170 Xia HM, Seah YP, Liu YC, Wang W, Toh AGG, Wang ZP. Anti-solvent precipitation of solid lipid nanoparticles using a microfluidic oscillator mixer. Microfluid Nanofluidics 2015; 19 (02) 283-290
  • 171 Liu Y, Salituro GM, Lee KJ, Bak A, Leung DH. Modulating drug release and enhancing the oral bioavailability of torcetrapib with solid lipid dispersion formulations. AAPS PharmSciTech 2015; 16 (05) 1091-1100
  • 172 Battaglia L, Gallarate M, Cavalli R, Trotta M. Solid lipid nanoparticles produced through a coacervation method. J Microencapsul 2010; 27 (01) 78-85
  • 173 Liu D, Jiang S, Shen H. et al. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. J Nanopart Res 2011; 13 (06) 2375-2386
  • 174 Kumar R. Nanotechnology based approaches to enhance aqueous solubility and bioavailability of griseofulvin: a literature survey. J Drug Deliv Sci Technol 2019; 53: 101221
  • 175 Kim DH, Lim S, Shim J. et al. A simple evaporation method for large-scale production of liquid crystalline lipid nanoparticles with various internal structures. ACS Appl Mater Interfaces 2015; 7 (36) 20438-20446
  • 176 Wang L, Griffel B, Xu X. Synthesis of PLGA-lipid hybrid nanoparticles for siRNA delivery using the emulsion method PLGA-PEG-lipid nanoparticles for siRNA delivery. Methods Mol Biol 2017; 1632: 231-240
  • 177 Maeki M, Uno S, Niwa A, Okada Y, Tokeshi M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J Control Release 2022; 344: 80-96
  • 178 Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev 2018; 128: 84-100
  • 179 Zhang B, Zhou X, Miao Y. et al. Effect of phosphatidylcholine on the stability and lipolysis of nanoemulsion drug delivery systems. Int J Pharm 2020; 583: 119354
  • 180 Zhu C, Gong S, Ding J. et al. Supersaturated polymeric micelles for oral silybin delivery: the role of the Soluplus-PVPVA complex. Acta Pharm Sin B 2019; 9 (01) 107-117
  • 181 Yu M, Xu L, Tian F. et al. Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nat Commun 2018; 9 (01) 2607
  • 182 Zhang X, Angsantikul P, Ying M. et al. Remote loading of small-molecule therapeutics into cholesterol-enriched cell membrane-derived vesicles. Angew Chem Int Ed Engl 2017; 56 (45) 14075-14079
  • 183 Ying M, Zhuang J, Wei X. et al. Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv Funct Mater 2018; 28 (22) 1801032
  • 184 Nie D, Dai Z, Li J. et al. Cancer-cell-membrane-coated nanoparticles with a yolk-shell structure augment cancer chemotherapy. Nano Lett 2020; 20 (02) 936-946
  • 185 Guihong C, Yufang M, Shaoqing C, Fuqiang H, Yong G, Hong Y. Transport features and structural optimization of solid lipid nanoparticles crossing the intestinal epithelium. RSC Advances 2016; 6 (74) 70433-70445
  • 186 Liang J, Zhang X, Miao Y, Li J, Gan Y. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma. Int J Nanomedicine 2017; 12: 2033-2044