CC BY-NC-ND 4.0 · Libyan International Medical University Journal 2022; 07(01): 022-027
DOI: 10.1055/s-0042-1749117
Original Article

Effect of Intramuscular Injection of Vitamin D on 25-Hydroxyvitamin D Levels, Glycaemic Control, and Liver Enzymes in Libyan Patients with Type 2 Diabetes Mellitus

Hafsa M. Alemam
1   Department of Environment, Food, and Biological Applications, Libyan Centre for Biotechnology Research, Tripoli, Libya
,
Mouna M. ElJilani
2   Department of Genetic Engineering, Libyan Centre for Biotechnology Research, Tripoli, Libya
,
3   Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tripoli, Tripoli, Libya
› Author Affiliations

Abstract

Background Vitamin D is a fat-soluble hormone that plays an important role in glycaemic control. In addition, it has a positive effect on improving liver enzyme function.

Aim This study was performed to examine the effect of intramuscular injection of vitamin D on serum 25-hydroxyvitamin D [25(OH)D] levels, glycemic control, and liver enzymes in Libyan patients suffering from type 2 diabetes mellitus (T2DM) with vitamin D deficiency.

Methods and Materials This cross-sectional study enrolled 100 T2DM (50 males and 50 females). Their serum 25(OH)D, fasting blood glucose (FBG), and liver enzymes were measured at the baseline and 12 weeks after treatment with vitamin D (200,000 IU) injection monthly for 3 months. Data analysis involved the estimation of mean ± standard error (SE) and comparison of means between pre and post-treatment values using paired t-test. Independent t-test was used to compare the means between males and females. The level of significance was set at p < 0.05.

Results Females had a lower 25(OH)D blood levels than males at baseline (7.03 ± 0.25 ng/mL versus 7.86 ± 0.26 ng/mL, respectively p < 0.02). 25(OH)D levels in both sexes was increased significantly from 7.45 ± 0.18 ng/mL to 26.69 ± 0.24 ng/mL after 12 weeks of vitamin D injections (p < 0.001), with no significant differences between male and females. FBG levels in both sexes was significantly decreased from 144.68 ± 1.84 mg/dL to 85.96 ± 0.34 mg/dL post treatment (p < 0.001). Alanine aminotransferase (ALT) was increased from 10.24 ± 0.17 U/L at baseline to 20.34 ± 1.15 U/L post treatment (p < 0.001). Similarly, aspartate aminotransferase (AST) was increased from 11.23 ± 0.21 to 20.57 ± 0.22 U/L (p < 0.001), and alkaline phosphatase (ALP) was decreased from 124.95 ± 1.15 U/L to 111.17 ± 1.27 U/L (p < 0.001). There were no significant differences between male and female liver enzymes either pre- or post-vitamin D injections

Conclusion Treatment with vitamin D injection showed a significant increase in 25(OH)D accompanied by decreased FBG and ALP levels and increased ALT and AST levels. Vitamin D levels should be monitored and adjusted in diabetic patients.

Zoom Image

Authors' Contributions

Hafsa M. Alemam, Mouna M. ElJilani, and Abdulla M. Bashein contributed to study design and concept, definition of intellectual content, literature search, data and statistical analysis, manuscript preparation. Hafsa M. Alemam and Mouna M. ElJilani contributed to experimental studies and data acquisition. Abdulla M. Bashein contributed to manuscript editing and reviewing.




Publication History

Article published online:
02 August 2022

© 2022. Libyan International Medical University. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin North Am 2014; 43 (01) 205-232 DOI: 10.1016/j.ecl.2013.09.010.
  • 2 Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical localization of the 1,25(OH)2D3 receptor and calbindin D28k in human and rat pancreas. Am J Physiol 1994; 267 (3 Pt 1): E356-E360 DOI: 10.1152/ajpendo.1994.267.3.E356.
  • 3 Maestro B, Dávila N, Carranza MC, Calle C. Identification of a vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol 2003; 84 (2-3): 223-230 DOI: 10.1016/S0960-0760(03)00032-3.
  • 4 Maestro B, Molero S, Bajo S, Dávila N, Calle C. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem Funct 2002; 20 (03) 227-232 DOI: 10.1002/cbf.951.
  • 5 Hitman GA, Mannan N, McDermott MF. et al. Vitamin D receptor gene polymorphisms influence insulin secretion in Bangladeshi Asians. Diabetes 1998; 47 (04) 688-690 DOI: 10.2337/diabetes.47.4.688.
  • 6 Targher G, Bertolini L, Scala L. et al. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2007; 17 (07) 517-524 DOI: 10.1016/j.numecd.2006.04.002.
  • 7 Gad AI, Elmedames MR, Abdelhai AR, Marei AM, Abdel-Ghani HA. Efficacy of vitamin D supplementation on adult patients with non-alcoholic fatty liver disease: a single-center experience. Gastroenterol Hepatol Bed Bench 2021; 14 (01) 44-52
  • 8 Zelber-Sagi S, Zur R, Thurm T. et al. Low serum vitamin D is independently associated with unexplained elevated ALT only among non-obese men in the general population. Ann Hepatol 2019; 18 (04) 578-584 DOI: 10.1016/j.aohep.2019.03.006.
  • 9 Sattar N, Forrest E, Preiss D. Non-alcoholic fatty liver disease. BMJ 2014; 349: g4596 DOI: 10.1136/bmj.g4596.
  • 10 Fazel Y, Koenig AB, Sayiner M, Goodman ZD, Younossi ZM. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism 2016; 65 (08) 1017-1025 DOI: 10.1016/j.metabol.2016.01.012.
  • 11 Satapathy SK, Sanyal AJ. Epidemiology and natural history of nonalcoholic fatty liver disease. Semin Liver Dis 2015; 35 (03) 221-235 DOI: 10.1055/s-0035-1562943.
  • 12 ElJilani MM, Alemam HA, Bashein A. Vitamin D and liver enzymes' levels in Libyans with type 2 diabetes. Libyan J Med Sci 2021; 5(3): 116-120
  • 13 Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem?. J Steroid Biochem Mol Biol 2014; 144 (Pt A): 138-145 DOI: 10.1016/j.jsbmb.2013.11.003.
  • 14 Annweiler C, Souberbielle J-C. Vitamin D supplementation and COVID-19: expert consensus and guidelines [article in French]. Geriatr Psychol Neuropsychiatr Vieil 2021; 19 (01) 20-29 DOI: 10.1684/pnv.2020.0907.
  • 15 Xuan Y, Zhao HY, Liu J-M. Vitamin D and type 2 diabetes mellitus (D2). J Diabetes 2013; 5 (03) 261-267 DOI: 10.1111/1753-0407.12024.
  • 16 Issa CM. Vitamin D and Type 2 diabetes mellitus. Adv Exp Med Biol 2017; 996: 193-205 DOI: 10.1007/978-3-319-56017-5_16.
  • 17 Li Y-X, Zhou L, Vitamin D. Vitamin D deficiency, obesity and diabetes. Cell Mol Biol 2015; 61 (03) 35-38
  • 18 Sacerdote A, Dave P, Lokshin V, Bahtiyar G. Type 2 diabetes mellitus, insulin resistance, and vitamin D. Curr Diab Rep 2019; 19 (10) 101 DOI: 10.1007/s11892-019-1201-y.
  • 19 Boucher BJ. Vitamin D insufficiency and diabetes risks. Curr Drug Targets 2011; 12 (01) 61-87 DOI: 10.2174/138945011793591653.
  • 20 Holick MF, Binkley NC, Bischoff-Ferrari HA. et al; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96 (07) 1911-1930 DOI: 10.1210/jc.2011-0385.
  • 21 Genuth S, Alberti KGMM, Bennett P. et al; Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003; 26 (11) 3160-3167
  • 22 Ceriotti F, Henny J, Queraltó J. et al; IFCC Committee on Reference Intervals and Decision Limits (C-RIDL); Committee on Reference Systems for Enzymes (C-RSE). Common reference intervals for aspartate aminotransferase (AST), alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT) in serum: results from an IFCC multicenter study. Clin Chem Lab Med 2010; 48 (11) 1593-1601 DOI: 10.1515/CCLM.2010.315.
  • 23 Strømme JH, Rustad P, Steensland H, Theodorsen L, Urdal P. Reference intervals for eight enzymes in blood of adult females and males measured in accordance with the International Federation of Clinical Chemistry reference system at 37 degrees C: part of the Nordic Reference Interval Project. Scand J Clin Lab Invest 2004; 64 (04) 371-384 DOI: 10.1080/00365510410002742.
  • 24 Nwosu BU, Maranda L. The effects of vitamin D supplementation on hepatic dysfunction, vitamin D status, and glycemic control in children and adolescents with vitamin D deficiency and either type 1 or type 2 diabetes mellitus. PLoS One 2014; 9 (06) e99646 DOI: 10.1371/journal.pone.0099646.
  • 25 Gupta N, Farooqui KJ, Batra CM, Marwaha RK, Mithal A. Effect of oral versus intramuscular vitamin D replacement in apparently healthy adults with Vitamin D deficiency. Indian J Endocrinol Metab 2017; 21 (01) 131-136 DOI: 10.4103/2230-8210.196007.
  • 26 Tellioglu A, Basaran S, Guzel R, Seydaoglu G. Efficacy and safety of high dose intramuscular or oral cholecalciferol in vitamin D deficient/insufficient elderly. Maturitas 2012; 72 (04) 332-338 DOI: 10.1016/j.maturitas.2012.04.011.
  • 27 Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 2007; 92 (06) 2017-2029 DOI: 10.1210/jc.2007-0298.
  • 28 Alvarez JA, Ashraf A. Role of vitamin d in insulin secretion and insulin sensitivity for glucose homeostasis. Int J Endocrinol 2010; 2010: 351385 DOI: 10.1155/2010/351385.
  • 29 Mirhosseini N, Vatanparast H, Mazidi M, Kimball SM. The effect of improved serum 25-hydroxyvitamin D status on glycemic control in diabetic patients: a meta-analysis. J Clin Endocrinol Metab 2017; 102 (09) 3097-3110 DOI: 10.1210/jc.2017-01024.
  • 30 Pilz S, Kienreich K, Rutters F. et al. Role of vitamin D in the development of insulin resistance and type 2 diabetes. Curr Diab Rep 2013; 13 (02) 261-270 DOI: 10.1007/s11892-012-0358-4.
  • 31 Szymczak-Pajor I, Drzewoski J, Śliwińska A. The molecular mechanisms by which vitamin D prevents insulin resistance and associated disorders. Int J Mol Sci 2020; 21 (18) E6644 DOI: 10.3390/ijms21186644.
  • 32 Szymczak-Pajor I, Śliwińska A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients 2019; 11 (04) E794 DOI: 10.3390/nu11040794.
  • 33 de Oliveira C, Biddulph JP, Hirani V, Schneider IJC. Vitamin D and inflammatory markers: cross-sectional analyses using data from the English Longitudinal Study of Ageing (ELSA). J Nutr Sci 2017; 6: e1 DOI: 10.1017/jns.2016.37.
  • 34 Baier LJ, Dobberfuhl AM, Pratley RE, Hanson RL, Bogardus C. Variations in the vitamin D-binding protein (Gc locus) are associated with oral glucose tolerance in nondiabetic Pima Indians. J Clin Endocrinol Metab 1998; 83 (08) 2993-2996
  • 35 Sahebi R, Rezayi M, Emadzadeh M. et al. The effects of vitamin D supplementation on indices of glycemic control in Iranian diabetics: a systematic review and meta-analysis. Complement Ther Clin Pract 2019; 34: 294-304
  • 36 Sollid ST, Hutchinson MY, Fuskevåg OM. et al. No effect of high-dose vitamin D supplementation on glycemic status or cardiovascular risk factors in subjects with prediabetes. Diabetes Care 2014; 37 (08) 2123-2131 DOI: 10.2337/dc14-0218.
  • 37 Rafiq S, Jeppesen PB. Insulin resistance is inversely associated with the status of vitamin D in both diabetic and non-diabetic populations. Nutrients 2021; 13 (06) 1742 DOI: 10.3390/nu13061742.
  • 38 Sangatrashani SJH, Habibian M. Moosavi SJ. Effect of core stability exercise and vitamin D intake on liver enzymes activities in women with chronic low back pain. The Journal of Qazvin University of Medical Sciences 2020; 24 (04) 332-345
  • 39 Tavakoli H, Rostami H, Avan A. et al. High dose vitamin D supplementation is associated with an improvement in serum markers of liver function. Biofactors 2019; 45 (03) 335-342 DOI: 10.1002/biof.1496.
  • 40 Sharma U, Pal D, Prasad R. Alkaline phosphatase: an overview. Indian J Clin Biochem 2014; 29 (03) 269-278 DOI: 10.1007/s12291-013-0408-y.
  • 41 Saraç F, Saygılı F. Causes of high bone alkaline phosphatase. Biotechnol Equip 2007; 21: 194-197 DOI: 10.1080/13102818.2007.10817444.
  • 42 Bellastella G, Scappaticcio L, Longo M. et al. New insights into vitamin D regulation: is there a role for alkaline phosphatase?. J Endocrinol Invest 2021; 44 (09) 1891-1896 DOI: 10.1007/s40618-021-01503-w.
  • 43 Masood H, Narang AP, Bhat IA, Shah GN. Persistent limb pain and raised serum alkaline phosphatase the earliest markers of subclinical hypovitaminosis D in Kashmir. Indian J Physiol Pharmacol 1989; 33 (04) 259-261
  • 44 Vasudevan J, Jenifer A, Reddy GMM, Thayumanavan S. Serum alkaline phosphatase for screening of hypovitaminosis D. Indian Pediatr 2014; 51 (01) 60-61
  • 45 Shaheen S, Noor SS, Barakzai Q. Serum alkaline phosphatase screening for vitamin D deficiency states. J Coll Physicians Surg Pak 2012; 22 (07) 424-427