CC BY-NC-ND 4.0 · Int Arch Otorhinolaryngol 2023; 27(03): e518-e527
DOI: 10.1055/s-0042-1744172
Systematic Review

The P300 Auditory Evoked Potential in Cochlear Implant Users: A Scoping Review

1   Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
,
2   Centro Especializado de Otorrinolaringologia e Fonoaudiologia (CEOF), Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
,
3   Department of General and Specialized Nursing, Faculdade de Enfermagem de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
,
4   Health Sciences Department, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
,
5   Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
,
5   Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
,
4   Health Sciences Department, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
› Author Affiliations
Funding Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Abstract

Introduction The P300 auditory evoked potential is a long-latency cortical potential evoked with auditory stimulation, which provides information on neural mechanisms underlying the central auditory processing.

Objectives To identify and gather scientific evidence regarding the P300 in adult cochlear implant (CI) users.

Data Synthesis A total of 87 articles, 20 of which were selected for this study, were identified and exported to the Rayyan search software. Those 20 articles did not propose a homogeneous methodology, which made comparison more difficult. Most articles (60%) in this review compare CI users with typical hearing people, showing prolonged P300 latency in CI users. Among the studies, 35% show that CI users present a smaller P300 amplitude. Another variable is the influence of the kind of stimulus used to elicit P300, which was prolonged in 30% of the studies that used pure tone stimuli, 10% of the studies that used pure tone and speech stimuli, and 60% of the studies that used speech stimuli.

Conclusion This review has contributed with evidence that shows the importance of applying a controlled P300 protocol to diagnose and monitor CI users. Regardless of the stimuli used to elicit P300, we noticed a pattern in the increase in latency and decrease in amplitude in CI users. The user's experience with the CI speech processor over time and the speech test results seem to be related to the P300 latency and amplitude measurements.



Publication History

Received: 11 April 2021

Accepted: 23 January 2022

Article published online:
11 July 2022

© 2022. Fundação Otorrinolaringologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Duarte JL, Alvarenga KF, Costa OA. Potencial cognitivo P300 realizado em campo livre: aplicabilidade do teste. Rev Bras Otorrinolaringol 2004; 70 (06) 780-785
  • 2 Massa CG, Rabelo CM, Matas CG, Schochat E, Samelli AG. P300 with verbal and nonverbal stimuli in normal hearing adults. Rev Bras Otorrinolaringol (Engl Ed) 2011; 77 (06) 686-690
  • 3 Franco GM. O potencial evocado cognitivo em adultos normais. Arq Neuropsiquiatr 2001; 59 (2-A): 198-200
  • 4 Hall J. Handbook of auditory evoked responses. Boston: Allyn & Bacon; 2006
  • 5 Kraus N, Mcgee T. Potenciais auditivos de longa latência. In: Katz, J.; Ivey RG. (eds). Tratado de audiologia clínica. São Paulo: Manole; 1999. 4.
  • 6 McPherson DL. Late potentials of the auditory system. San Diego: Singular Publishing Group; 1996
  • 7 Picton TW, Alain C, Woods DL. et al. Intracerebral sources of human auditory-evoked potentials. Audiol Neurotol 1999; 4 (02) 64-79
  • 8 Didoné DD, Oppitz SJ, Folgearini J, Biaggio EP, Garcia MV. Auditory Evoked Potentials with Different Speech Stimuli: a Comparison and Standardization of Values. Int Arch Otorhinolaryngol 2016; 20 (02) 99-104
  • 9 Martin BA, Tremblay KL, Korczak P. Speech evoked potentials: from the laboratory to the clinic. Ear Hear 2008; 29 (03) 285-313 Review
  • 10 - Stapells DR. Cortical event-related potentials to auditory stimuli. In: KATZ J, Handbook of Clinical Audiology. 5. Maryland: Lippincott Williams & Wilkins; 2002: 308-406
  • 11 Huettel SA, McCarthy G. What is odd in the oddball task? Prefrontal cortex is activated by dynamic changes in response strategy. Neuropsychologia 2004; 42 (03) 379-386
  • 12 O'Connell RG, Dockree PM, Kelly SP. A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nat Neurosci 2012; 15 (12) 1729-1735
  • 13 Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 2007; 118 (10) 2128-2148
  • 14 Verleger R. Effects of relevance and response frequency on P3b amplitudes: Review of findings and comparison of hypotheses about the process reflected by P3b. Psychophysiology 2020; 57 (07) e13542
  • 15 Martin DA, Tremblay KL, Stapells DR. Principles and applications of cortical auditory Evoked Potentials. In Burkard RF, Don M, Eggermont, JJ. Auditory Evoked Potentials: basic principles and clinical application. Baltimore: Lippincott Williams & Wilkins; 2007: 482-507
  • 16 Kozlowski L, Wiemes GMR, Magni C, Silva ALG. A efetividade do treinamento auditivo na desordem do processamento auditivo central: estudo de caso. Rev Bras Otorrinolaringol 2004; 68 (04) 427-432
  • 17 Reis ACM, Iório MC. [P300 in subjects with hearing loss]. Pro Fono 2007; 19 (01) 113-122
  • 18 Polen SB. Auditory event-related potentials. Semin Hear 1984; 5 (02) 127-141
  • 19 Oates PA, Kurtzberg D, Stapells DR. Effects of sensorineural hearing loss on cortical event-related potential and behavioral measures of speech-sound processing. Ear Hear 2002; 23 (05) 399-415
  • 20 Wall LG, Martin JW. The effect of hearing loss on the latency of the P300 evoked potential: A pilot study. NSSLHA J. 1991; 18: 121-125
  • 21 Torkildsen JVK, Arciuli J, Haukedal CL, Wie OB. Does a lack of auditory experience affect sequential learning?. Cognition 2018; 170: 123-129
  • 22 Kaga K, Kodera K, Hirota E, Tsuzuku T. P300 response to tones and speech sounds after cochlear implant: a case report. Laryngoscope 1991; 101 (08) 905-907
  • 23 Groenen P, Snik A, van den Broek P. On the clinical relevance of mismatch negativity: results from subjects with normal hearing and cochlear implant users. Audiol Neurotol 1996; 1 (02) 112-124
  • 24 Jordan K, Schmidt A, Plotz K. et al. Auditory event-related potentials in post- and prelingually deaf cochlear implant recipients. Am J Otol 1997; 18 (6, Suppl) S116-S117
  • 25 Okusa M, Shiraishi T, Kubo T, Nageishi Y. Effects of discrimination difficulty on cognitive event-related brain potentials in patients with cochlear implants. Otolaryngol Head Neck Surg 1999; 121 (05) 610-615
  • 26 Kubo T, Yamamoto K, Iwaki T, Matsukawa M, Doi K, Tamura M. Significance of auditory evoked responses (EABR and P300) in cochlear implant subjects. Acta Otolaryngol 2001; 121 (02) 257-261
  • 27 Iwaki T, Matsushiro N, Mah SR. et al. Comparison of speech perception between monaural and binaural hearing in cochlear implant patients. Acta Otolaryngol 2004; 124 (04) 358-362
  • 28 Mühler R, Ziese M, Kevanishvili Z, Schmidt M, von Specht H. Visualization of stimulation patterns in cochlear implants: application to event-related potentials (P300) in cochlear implant users. Ear Hear 2004; 25 (02) 186-190
  • 29 Kelly AS, Purdy SC, Thorne PR. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clin Neurophysiol 2005; 116 (06) 1235-1246
  • 30 Nager W, Münte TF, Bohrer I. et al. Automatic and attentive processing of sounds in cochlear implant patients - electrophysiological evidence. Restor Neurol Neurosci 2007; 25 (3-4): 391-396
  • 31 Sasaki T, Yamamoto K, Iwaki T, Kubo T. Assessing binaural/bimodal advantages using auditory event-related potentials in subjects with cochlear implants. Auris Nasus Larynx 2009; 36 (05) 541-546
  • 32 Obuchi C, Harashima T, Shiroma M. Auditory Evoked Potentials under Active and Passive Hearing Conditions in Adult Cochlear Implant Users. Clin Exp Otorhinolaryngol 2012; 5 (Suppl 1): S6-S9
  • 33 Finke M, Sandmann P, Kopp B, Lenarz T, Büchner A. Auditory distraction transmitted by a cochlear implant alters allocation of attentional resources. Front Neurosci 2015; 9: 68
  • 34 Grasel S, Greters M, Goffi-Gomez MVS. et al. P3 Cognitive Potential in Cochlear Implant Users. Int Arch Otorhinolaryngol 2018; 22 (04) 408-414
  • 35 Beynon AJ, Snik AF, Stegeman DF, van den Broek P. Discrimination of speech sound contrasts determined with behavioral tests and event-related potentials in cochlear implant recipients. J Am Acad Audiol 2005; 16 (01) 42-53
  • 36 Henkin Y, Tetin-Schneider S, Hildesheimer M, Kishon-Rabin L. Cortical neural activity underlying speech perception in postlingual adult cochlear implant recipients. Audiol Neurotol 2009; 14 (01) 39-53
  • 37 Soshi T, Hisanaga S, Kodama N. et al. Event-related potentials for better speech perception in noise by cochlear implant users. Hear Res 2014; 316: 110-121
  • 38 Henkin Y, Yaar-Soffer Y, Steinberg M, Muchnik C. Neural correlates of auditory-cognitive processing in older adult cochlear implant recipients. Audiol Neurotol 2014; 19 (Suppl 1): 21-26
  • 39 Finke M, Büchner A, Ruigendijk E, Meyer M, Sandmann P. On the relationship between auditory cognition and speech intelligibility in cochlear implant users: An ERP study. Neuropsychologia 2016; 87: 169-181
  • 40 Koelsch S, Wittfoth M, Wolf A, Müller J, Hahne A. Music perception in cochlear implant users: an event-related potential study. Clin Neurophysiol 2004; 115 (04) 966-972
  • 41 Makhdoum MJ, Hinderink JB, Snik AF, Groenen P, van den Broek P. Can event-related potentials be evoked by extra-cochlear stimulation and used for selection purposes in cochlear implantation?. Clin Otolaryngol Allied Sci 1998; 23 (05) 432-438
  • 42 Groenen PA, Beynon AJ, Snik AF, van den Broek P. Speech-evoked cortical potentials and speech recognition in cochlear implant users. Scand Audiol 2001; 30 (01) 31-40
  • 43 Peters M, Godfrey C, McInerney P, Soares C, Khalil H, Parker D. The Joanna Briggs Institute reviewers' manual 2015: methodology for JBI scoping reviews [Internet]. 2015 [cited 2018 May 01]. Available from: http://joannabriggs.org/assets/docs/sumari/Reviewers-Manual_Methodology-for-JBI-Scoping-Reviews_2015_v2.pdf
  • 44 Systematic Reviews, Centre for Research and Dissemination, University of York,. 2008 https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf
  • 45 Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016; 5 (01) 210
  • 46 Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6 (07) e1000097 http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097 Accessed May012018 [Internet]
  • 47 Linden DE. The p300: where in the brain is it produced and what does it tell us?. Neuroscientist 2005; 11 (06) 563-576
  • 48 Fjell AM, Walhovd KB. Effects of auditory stimulus intensity and hearing threshold on the relationship among P300, age, and cognitive function. Clin Neurophysiol 2003; 114 (05) 799-807
  • 49 Chang YS, Hong SH, Kim EY. et al. Benefit and predictive factors for speech perception outcomes in pediatric bilateral cochlear implant recipients. Rev Bras Otorrinolaringol (Engl Ed) 2019; 85 (05) 571-577
  • 50 Finke M, Billinger M, Büchner A. Toward Automated Cochlear Implant Fitting Procedures Based on Event-Related Potentials. Ear Hear 2017; 38 (02) e118-e127
  • 51 Amaral MSA. Comportamento do P300 em pacientes usuários de implante coclear com eletroestimulação unilateral [tesis]. Ribeirão Preto. Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo; 2019;105
  • 51 Amaral MSA, Zamberlan-Amorim NE, Mendes KDS. et al. Auditory evoked potential (P300) in cochlear implant users: a scoping review. bioRxiv 2020; in press.