CC BY-NC-ND 4.0 · Indographics 2022; 01(01): 057-077
DOI: 10.1055/s-0042-1742574
Review Article

Fatty Liver Disease: Pathophysiology and Imaging Features

Sharad Maheshwari
1   Department of Radiology, Kokilaben Hospital, Andheri West, Mumbai, Maharashtra, India
,
Sachin Kumar
2   Department of Radiology, Ruban Memorial Hospital, Patna, Bihar, India
,
Bharatbhai V. Nakshiwala
1   Department of Radiology, Kokilaben Hospital, Andheri West, Mumbai, Maharashtra, India
,
Ayush Srivastav
1   Department of Radiology, Kokilaben Hospital, Andheri West, Mumbai, Maharashtra, India
,
Vinaya Chavan
1   Department of Radiology, Kokilaben Hospital, Andheri West, Mumbai, Maharashtra, India
,
Abhijit Raut
1   Department of Radiology, Kokilaben Hospital, Andheri West, Mumbai, Maharashtra, India
,
Anoushka Maheshwari
3   Department of Oncology, Kokilaben Hospital, Andheri West, Mumbai, Maharashtra, India
› Author Affiliations

Abstract

Fatty liver is a benign condition to start with and is characterized by excess triglyceride in the hepatocytes. However, in the long term, it can lead to increased oxidative stress & inflammation, with resultant steatohepatitis. This can subsequently progress to cirrhosis and eventually an increased risk of developing hepatocellular carcinoma (HCC). Liver biopsy is the gold standard for quantification of fat and assessing the degree of fibrosis, however, it is invasive and cannot be applied to a wider patient population. Conventional modalities like ultrasound offer a qualitative assessment of fat and are more subjective. Non-enhanced CT scan has been effectively used for fat quantification based on Hounsfield values. MRI & more recently MRI PDFF (proton density fat fraction) offers accurate diagnosis, quantification, and monitoring of fatty liver disease in a noninvasive manner. This acts like an Imaging biomarker. Newer techniques like USG Elastography & MR Elastography help in the detection of fibrosis. Steatohepatitis and early liver fibrosis are reversible and it is crucial to detect and quantify to guide disease management. The radiologist can play a vital role in quantifying fat, detecting fibrosis, and early signs of chronic liver disease.



Publication History

Article published online:
19 September 2023

© 2022. Indographics. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Ahmed MH, Barakat S, Almobarak AO. Nonalcoholic fatty liver disease and cardiovascular disease: has the time come for cardiologists to be hepatologists?. J Obes 2012; 2012: 483135
  • 2 Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 2013; 10 (11) 686-690
  • 3 De A, Duseja A. Nonalcoholic fatty liver disease: Indian perspective. Clin Liver Dis (Hoboken) 2021; 18 (03) 158-163
  • 4 Marchesini G, Bugianesi E, Forlani G. et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003; 37 (04) 917-923
  • 5 Manne V, Handa P, Kowdley KV. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis 2018; 22 (01) 23-37
  • 6 Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr 2005; 81 (03) 555-563
  • 7 Kral JG, Lundholm K, Björntorp P, Sjöström L, Scherstén T. Hepatic lipid metabolism in severe human obesity. Metabolism 1977; 26 (09) 1025-1031
  • 8 Sanyal AJ, Campbell-Sargent C, Mirshahi F. et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001; 120 (05) 1183-1192
  • 9 Basaranoglu M, Basaranoglu G, Bugianesi E. Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr 2015; 4 (02) 109-116
  • 10 Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology 2014; 147 (03) 577-594.e1
  • 11 Pritchard MT, McCracken JM. Identifying novel targets for treatment of liver fibrosis: what can we learn from injured tissues which heal without a scar?. Curr Drug Targets 2015; 16 (12) 1332-1346
  • 12 Hamer OW, Aguirre DA, Casola G, Lavine JE, Woenckhaus M, Sirlin CB. Fatty liver: imaging patterns and pitfalls. Radiographics 2006; 26 (06) 1637-1653
  • 13 Valls C, Iannacconne R, Alba E. et al. Fat in the liver: diagnosis and characterization. Eur Radiol 2006; 16 (10) 2292-2308
  • 14 Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 2009; 51 (03) 433-445
  • 15 Brunt EM. Pathology of fatty liver disease. Mod Pathol 2007; 20 (Suppl. 01) S40-S48
  • 16 Maharaj B, Maharaj RJ, Leary WP. et al. Sampling variability and its influence on the diagnostic yield of percutaneous needle biopsy of the liver. Lancet 1986; 1 (8480): 523-525
  • 17 Arun J, Jhala N, Lazenby AJ, Clements R, Abrams GA. Influence of liver biopsy heterogeneity and diagnosis of nonalcoholic steatohepatitis in subjects undergoing gastric bypass. Obes Surg 2007; 17 (02) 155-161
  • 18 Chen C-L, Cheng Y-F, Yu C-Y. et al. Living donor liver transplantation: the Asian perspective. Transplantation 2014; 97 (Suppl. 08) S3
  • 19 Chartampilas E. Imaging of nonalcoholic fatty liver disease and its clinical utility. Hormones (Athens) 2018; 17 (01) 69-81
  • 20 Charatcharoenwitthaya P, Lindor KD. Role of radiologic modalities in the management of non-alcoholic steatohepatitis. Clin Liver Dis 2007; 11 (01) 37-54 , viii
  • 21 Saadeh S, Younossi ZM, Remer EM. et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002; 123 (03) 745-750
  • 22 Strauss S, Gavish E, Gottlieb P, Katsnelson L. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. AJR Am J Roentgenol 2007; 189 (06) W320-3
  • 23 Lee SS, Park SH. Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20 (23) 7392-7402
  • 24 Kodama Y, Ng CS, Wu TT. et al. Comparison of CT methods for determining the fat content of the liver. AJR Am J Roentgenol 2007; 188 (05) 1307-1312
  • 25 Joy D, Thava VR, Scott BB. Diagnosis of fatty liver disease: is biopsy necessary?. Eur J Gastroenterol Hepatol 2003; 15 (05) 539-543
  • 26 Piekarski J, Goldberg HI, Royal SA, Axel L, Moss AA. Difference between liver and spleen CT numbers in the normal adult: its usefulness in predicting the presence of diffuse liver disease. Radiology 1980; 137 (03) 727-729
  • 27 Limanond P, Raman SS, Lassman C. et al. Macrovesicular hepatic steatosis in living related liver donors: correlation between CT and histologic findings. Radiology 2004; 230 (01) 276-280
  • 28 Hamer OW, Aguirre DA, Casola G, Sirlin CB. Imaging features of perivascular fatty infiltration of the liver: initial observations. Radiology 2005; 237 (01) 159-169
  • 29 Pamilo M, Sotaniemi EA, Suramo I, Lähde S, Arranto AJ. Evaluation of liver steatotic and fibrous content by computerized tomography and ultrasound. Scand J Gastroenterol 1983; 18 (06) 743-747
  • 30 Yajima Y, Narui T, Ishii M. et al. Computed tomography in the diagnosis of fatty liver: total lipid content and computed tomography number. Tohoku J Exp Med 1982; 136 (03) 337-342
  • 31 Park SH, Kim PN, Kim KW. et al. Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment. Radiology 2006; 239 (01) 105-112
  • 32 Kawamoto S, Soyer PA, Fishman EK, Bluemke DA. Nonneoplastic liver disease: evaluation with CT and MR imaging. Radiographics 1998; 18 (04) 827-848
  • 33 Rofsky NM, Fleishaker H. CT and MRI of diffuse liver disease. Semin Ultrasound CT MR 1995; 16 (01) 16-33
  • 34 Kinner S, Reeder SB, Yokoo T. Quantitative Imaging Biomarkers of NAFLD. Dig Dis Sci 2016; 61 (05) 1337-1347
  • 35 Girometti R. 3.0 Tesla magnetic resonance imaging: A new standard in liver imaging?. World J Hepatol 2015; 7 (15) 1894-1898
  • 36 Huber A, Ebner L, Montani M. et al. Computed tomography findings in liver fibrosis and cirrhosis. Accessed January 12, 2022 at: https://smw.ch/article/doi/smw.2014.13923
  • 37 Qayyum A, Goh JS, Kakar S, Yeh BM, Merriman RB, Coakley FV. Accuracy of liver fat quantification at MR imaging: comparison of out-of-phase gradient-echo and fat-saturated fast spin-echo techniques–initial experience. Radiology 2005; 237 (02) 507-511
  • 38 Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153 (01) 189-194
  • 39 Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008; 28 (03) 543-558
  • 40 Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34 (04) 729-749
  • 41 Outwater EK, Blasbalg R, Siegelman ES, Vala M. Detection of lipid in abdominal tissues with opposed-phase gradient-echo images at 1.5 T: techniques and diagnostic importance. Radiographics 1998; 18 (06) 1465-1480
  • 42 Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB. Fat and water magnetic resonance imaging. J Magn Reson Imaging 2010; 31 (01) 4-18
  • 43 Reeder SB, Pineda AR, Wen Z. et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 2005; 54 (03) 636-644
  • 44 Liu C-Y, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med 2007; 58 (02) 354-364
  • 45 Bydder M, Yokoo T, Hamilton G. et al. Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 2008; 26 (03) 347-359
  • 46 Yu H, McKenzie CA, Shimakawa A. et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007; 26 (04) 1153-1161
  • 47 Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008; 60 (05) 1122-1134
  • 48 Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 2012; 36 (05) 1011-1014
  • 49 Henninger B, Alustiza J, Garbowski M, Gandon Y. Practical guide to quantification of hepatic iron with MRI. Eur Radiol 2020; 30 (01) 383-393
  • 50 Procter AJ, Sun JY, Malcolm PN, Toms AP. Measuring liver fat fraction with complex-based chemical shift MRI: the effect of simplified sampling protocols on accuracy. BMC Med Imaging 2019; 19 (01) 14
  • 51 Caussy C, Reeder SB, Sirlin CB, Loomba R. Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH trials. Hepatology 2018; 68 (02) 763-772
  • 52 Idilman IS, Aniktar H, Idilman R. et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013; 267 (03) 767-775
  • 53 Bannas P, Kramer H, Hernando D. et al. Quantitative magnetic resonance imaging of hepatic steatosis: validation in ex vivo human livers. Hepatology 2015; 62 (05) 1444-1455
  • 54 Dennis A, Kelly MD, Fernandes C. et al. Correlations between MRI biomarkers PDFF and cT1 with histopathological features of non-alcoholic steatohepatitis. Front Endocrinol (Lausanne) 2021; 11: 575843
  • 55 Permutt Z, Le T-A, Peterson MR. et al. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease - MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther 2012; 36 (01) 22-29
  • 56 Kleiner DE, Brunt EM, Van Natta M. et al; Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41 (06) 1313-1321
  • 57 Tang A, Tan J, Sun M. et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013; 267 (02) 422-431
  • 58 Caussy C, Alquiraish MH, Nguyen P. et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018; 67 (04) 1348-1359
  • 59 Tang A, Desai A, Hamilton G. et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 2015; 274 (02) 416-425
  • 60 Dulai PS, Sirlin CB, Loomba R. MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: Clinical trials to clinical practice. J Hepatol 2016; 65 (05) 1006-1016
  • 61 Tyagi A, Yeganeh O, Levin Y. et al. Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults. Abdom Imaging 2015; 40 (08) 3070-3077
  • 62 Negrete LM, Middleton MS, Clark L. et al. Inter-examination precision of magnitude-based MRI for estimation of segmental hepatic proton density fat fraction in obese subjects. J Magn Reson Imaging 2014; 39 (05) 1265-1271
  • 63 Kang GH, Cruite I, Shiehmorteza M. et al. Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 2011; 34 (04) 928-934
  • 64 Artz NS, Haufe WM, Hooker CA. et al. Reproducibility of MR-based liver fat quantification across field strength: Same-day comparison between 1.5T and 3T in obese subjects. J Magn Reson Imaging 2015; 42 (03) 811-817
  • 65 Athithan L, Gulsin GS, House MJ. et al. A comparison of liver fat fraction measurement on MRI at 3T and 1.5T. PLoS One 2021; 16 (07) e0252928
  • 66 Noureddin M, Lam J, Peterson MR. et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 2013; 58 (06) 1930-1940
  • 67 Loomba R, Sirlin CB, Ang B. et al; San Diego Integrated NAFLD Research Consortium (SINC). Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology 2015; 61 (04) 1239-1250
  • 68 Patel J, Bettencourt R, Cui J. et al. Association of noninvasive quantitative decline in liver fat content on MRI with histologic response in nonalcoholic steatohepatitis. Therap Adv Gastroenterol 2016; 9 (05) 692-701
  • 69 Harrison SA, Bashir MR, Guy CD. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2019; 394 (10213): 2012-2024
  • 70 Harrison SA, Rossi SJ, Paredes AH. et al. NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology 2020; 71 (04) 1198-1212
  • 71 Le T-A, Chen J, Changchien C. et al; San Diego Integrated NAFLD Research Consortium (SINC). Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology 2012; 56 (03) 922-932
  • 72 Doycheva I, Cui J, Nguyen P. et al. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther 2016; 43 (01) 83-95
  • 73 Hamilton G, Yokoo T, Bydder M. et al. In vivo characterization of the liver fat ¹H MR spectrum. NMR Biomed 2011; 24 (07) 784-790
  • 74 Meisamy S, Hines CDG, Hamilton G. et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011; 258 (03) 767-775
  • 75 Heba ER, Desai A, Zand KA. et al. Accuracy and the effect of possible subject-based confounders of magnitude-based MRI for estimating hepatic proton density fat fraction in adults, using MR spectroscopy as reference. J Magn Reson Imaging 2016; 43 (02) 398-406
  • 76 Bastati N, Feier D, Wibmer A. et al. Noninvasive differentiation of simple steatosis and steatohepatitis by using gadoxetic acid-enhanced MR imaging in patients with nonalcoholic fatty liver disease: a proof-of-concept study. Radiology 2014; 271 (03) 739-747
  • 77 Smits LP, Coolen BF, Panno MD. et al. Noninvasive differentiation between hepatic steatosis and steatohepatitis with MR imaging enhanced with USPIOs in patients with nonalcoholic fatty liver disease: a proof-of-concept study. Radiology 2016; 278 (03) 782-791
  • 78 Venkatesh SK, Ehman RL. Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am 2014; 22 (03) 433-446
  • 79 Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics 2017; 7 (05) 1303-1329
  • 80 Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound elastography and MR elastography for assessing liver fibrosis: part 1, principles and techniques. AJR Am J Roentgenol 2015; 205 (01) 22-32
  • 81 Lu J, Chen M, Chen Q-H, Wu Q, Jiang J-N, Leung T-Y. Elastogram: physics, clinical applications, and risks. Maternal-Fetal Medicine. 2019; 1: 113-122
  • 82 Dhyani M, Anvari A, Samir AE. Ultrasound elastography: liver. Abdom Imaging 2015; 40 (04) 698-708
  • 83 Audière S, Angelini ED, Sandrin L, Charbit M. Maximum likelihood estimation of shear wave speed in transient elastography. IEEE Trans Med Imaging 2014; 33 (06) 1338-1349
  • 84 Bamber J, Cosgrove D, Dietrich CF. et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med 2013; 34 (02) 169-184
  • 85 Friedrich-Rust M, Nierhoff J, Lupsor M. et al. Performance of acoustic radiation force impulse imaging for the staging of liver fibrosis: a pooled meta-analysis. J Viral Hepat 2012; 19 (02) e212-e219
  • 86 Barr RG, Ferraioli G, Palmeri ML. et al. Elastography assessment of liver fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 2015; 276 (03) 845-861
  • 87 Morikawa H, Fukuda K, Kobayashi S. et al. Real-time tissue elastography as a tool for the noninvasive assessment of liver stiffness in patients with chronic hepatitis C. J Gastroenterol 2011; 46 (03) 350-358
  • 88 Cosgrove D, Piscaglia F, Bamber J. et al; EFSUMB. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med 2013; 34 (03) 238-253
  • 89 Muller M, Gennisson J-L, Deffieux T, Tanter M, Fink M. Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study. Ultrasound Med Biol 2009; 35 (02) 219-229
  • 90 Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C. Liver Fibrosis Study Group. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology 2012; 56 (06) 2125-2133
  • 91 Yoon JH, Lee JM, Joo I. et al. Hepatic fibrosis: prospective comparison of MR elastography and US shear-wave elastography for evaluation. Radiology 2014; 273 (03) 772-782
  • 92 Huwart L, Sempoux C, Vicaut E. et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 2008; 135 (01) 32-40
  • 93 European Association For The Study Of The Liver. EASL clinical practice guidelines: management of chronic hepatitis B virus infection. J Hepatol 2012; 57 (01) 167-185
  • 94 Carrión JA, Navasa M, García-Retortillo M. et al. Efficacy of antiviral therapy on hepatitis C recurrence after liver transplantation: a randomized controlled study. Gastroenterology 2007; 132 (05) 1746-1756
  • 95 Marcellin P, Gane E, Buti M. et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013; 381 (9865): 468-475
  • 96 Guglielmo FF, Venkatesh SK, Mitchell DG. Liver MR elastography technique and image interpretation: pearls and pitfalls. Radiographics 2019; 39 (07) 1983-2002
  • 97 Kennedy P, Wagner M, Castéra L. et al. Quantitative elastography methods in liver disease: current evidence and future directions. Radiology 2018; 286 (03) 738-763
  • 98 Jajamovich GH, Dyvorne H, Donnerhack C, Taouli B. Quantitative liver MRI combining phase contrast imaging, elastography, and DWI: assessment of reproducibility and postprandial effect at 3.0 T. PLoS One 2014; 9 (05) e97355
  • 99 Berzigotti A, De Gottardi A, Vukotic R. et al. Effect of meal ingestion on liver stiffness in patients with cirrhosis and portal hypertension. PLoS One 2013; 8 (03) e58742
  • 100 Hines CDG, Lindstrom MJ, Varma AK, Reeder SB. Effects of postprandial state and mesenteric blood flow on the repeatability of MR elastography in asymptomatic subjects. J Magn Reson Imaging 2011; 33 (01) 239-244
  • 101 Mederacke I, Wursthorn K, Kirschner J. et al. Food intake increases liver stiffness in patients with chronic or resolved hepatitis C virus infection. Liver Int 2009; 29 (10) 1500-1506
  • 102 Mariappan YK, Glaser KJ, Ehman RL. Magnetic resonance elastography: a review. Clin Anat 2010; 23 (05) 497-511
  • 103 McCracken PJ, Manduca A, Felmlee J, Ehman RL. Mechanical transient-based magnetic resonance elastography. Magn Reson Med 2005; 53 (03) 628-639
  • 104 Manduca A, Oliphant TE, Dresner MA. et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 2001; 5 (04) 237-254
  • 105 Yin M, Talwalkar JA, Glaser KJ. et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 2007; 5 (10) 1207-1213.e2
  • 106 Costa-Silva L, Ferolla SM, Lima AS, Vidigal PVT, Ferrari TCA. MR elastography is effective for the non-invasive evaluation of fibrosis and necroinflammatory activity in patients with nonalcoholic fatty liver disease. Eur J Radiol 2018; 98: 82-89
  • 107 Millonig G, Reimann FM, Friedrich S. et al. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. Hepatology 2008; 48 (05) 1718-1723
  • 108 Pfeifer L, Strobel D, Neurath MF, Wildner D. Liver stiffness assessed by acoustic radiation force impulse (ARFI) technology is considerably increased in patients with cholestasis. Ultraschall Med 2014; 35 (04) 364-367