RSS-Feed abonnieren
DOI: 10.1055/s-0042-122145
Effect of Body Posture on Cardiovascular Performance and Recovery during Cycling Exercise
Wirkung der Körperhaltung auf Leistungs- und Erholungs- fähigkeit beim RadfahrenPublikationsverlauf
received 12. August 2016
accepted 24. November 2016
Publikationsdatum:
12. April 2017 (online)
Abstract
Purpose
This study aimed to assess the acute effects of posture position (upright vs. semi recumbent) during mild to moderate-intensity cycling exercise and recovery on cardiovascular indices in young healthy adults as there is little information on this subject.
Material and Methods
A randomized cross-over study of young healthy volunteers performed 2 sets of submaximal exercise tests during upright and recumbent cycle ergometry. Cardiovascular indices were determined using a noninvasive cardiac output measurement including heart rate (HR), stroke volume (SV) and cardiac output (CO). Blood pressure was measured manually. Cardiovascular indices were measured at rest, during exercise and post-exercise.
Results
Cardiac indices including CO and SV were greater in the recumbent position compared to the upright position, p<0.05, during resting phase. Blood pressure was similar in the both positions during the resting phase.
In phase I, CO, SV, HR and systolic BP were greater in the recumbent position than the upright position. However, CO, HR and systolic BP but not SV were greater with upright cycling than recumbent cycling during the second phase, p<0.05.
During recovery time, CO, HR and SV returned to the baseline measurements more quickly in the recumbent position compared to the upright position.
Discussion
Exercise in the recumbent position had less stress on cardiovascular system and could be beneficial for patients with cardiovascular limitations.
Conclusions
Clinicians and exercise physiologists should consider the effect of body position when prescribing and designing an exercise program for healthy individuals and patients.
Zusammenfassung
Zweck
Ziel dieser Studie war die Bewertung akuter Auswirkungen der Körperhaltung (aufrechte vs. halbliegende Position) während Radfahrtätigkeit von leichter bis mäßiger Intensität und der Erholungsphase auf Herz- und Kreislaufindizes bei jungen gesunden Erwachsenen, da zu diesem Thema nur wenige Informationen vorliegen.
Material und MethodenIn
einer randomisierten Crossover-Studie mit jungen, gesunden Probanden wurden in 2 Versuchsaufbauten submaximale Belastungstests in aufrechter und in halbliegender Fahrradergometrie durchgeführt. Die Herz- und Kreislaufindizes wurden unter Verwendung einer nicht-invasiven Messung der Herzleistung, einschließlich Herzfrequenz (HR), Schlagvolumen (SV) und Herzzeitvolumen (CO), bestimmt. Der Blutdruck wurde manuell gemessen. Die Herz- und Kreislaufindizes wurden unter Ruhebedingungen, während des Trainings und nach dem Training gemessen.
Ergebnisse
Die Herzindizes einschließlich CO und SV lagen während der Ruhephase in der halbliegenden Position höher, als in der aufrechten Position, p<0,05. Der Blutdruck war während der Ruhephase bei beiden Positionen ähnlich.
In der Phase I fielen CO, SV, HR und systolischer Blutdruck in der halbliegenden Position höher als in der aufrechten Position aus. Allerdings waren in der zweiten Phase CO, HR und systolischer Blutdruck größer beim aufrechten Radfahren, als in der halbaufrechten Position, dies galt jedoch nicht für das Schlagvolumen (SV), p<0,05.
Während der Erholungsphase kehrten CO, HR und SV in der halbliegenden Position schneller wieder zu den Baseline-Messwerten zurück, als in der aufrechten Position.
Diskussion
Die Übung in halbliegender Position übte auf das Herz-Kreislauf-System weniger Stress aus und könnte für Patienten mit kardiovaskulären Einschränkungen von Vorteil sein.
Schlussfolgerungen
Kliniker und Trainingsphysiologen sollten bei der Verschreibung und der Planung eines Trainingsprogramms für gesunde Menschen und Patienten die Auswirkung der Körperposition in Betracht ziehen.
-
References
- 1 Brummel NE, Girard TD, Ely EW. et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: The Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive care medicine 2014; 40: 370-379
- 2 Kayambu G, Boots R, Paratz J. Physical therapy for the critically ill in the ICU: A systematic review and meta-analysis. Critical care medicine 2013; 41: 1543-1554
- 3 Morris PE, Goad A, Thompson C. et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Critical care medicine 2008; 36: 2238-2243
- 4 Suzuki M, Ishiyama I, Seino T. et al. Cardio-pulmonary responses to increasing workload exercise on a cycle ergometer in healthy men . Advances in exercise and sports physiology 2007; 13: 19-24
- 5 Rowland T, Garrison A, Delulio A. Circulatory responses to progressive exercise: Insights from positional differences. International journal of sports medicine 2003; 24: 512-517
- 6 Takahashi T, Okada A, Saitoh T. et al. Difference in human cardiovascular response between upright and supine recovery from upright cycle exercise. European journal of applied physiology 2000; 81: 233-239
- 7 Leyk D, Essfeld D, Hoffmann U. et al. Influence of body position and pre-exercise activity on cardiac output and oxygen uptake following step changes in exercise intensity. European journal of applied physiology and occupational physiology 1992; 65: 499-506
- 8 Walsh-Riddle M, Blumenthal JA. Cardiovascular responses during upright and semi-recumbent cycle ergometry testing. Medicine and science in sports and exercise 1989; 21: 581-585
- 9 Bevegard S, Danielson M. Effect of body position on circulatory adaptation to exercise in patients with essential hypertension. Scandinavian journal of clinical and laboratory investigation 1977; 37: 63-70
- 10 Fisher JP, Adlan AM, Shantsila A. et al. Muscle metaboreflex and autonomic regulation of heart rate in humans. The Journal of physiology 2013; 591: 3777-3788
- 11 Calbet JA, Gonzalez-Alonso J, Helge JW. et al. Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer. J Appl Physiol 1985 2007; 103: 969-978
- 12 Cotsamire DL, Sullivan MJ, Bashore TM. et al. Position as a variable for cardiovascular responses during exercise. Clinical cardiology 1987; 10: 137-142
- 13 Egana M, O’Riordan D, Warmington SA. Exercise performance and VO2 kinetics during upright and recumbent high-intensity cycling exercise. European journal of applied physiology 2010; 110: 39-47
- 14 Leyk D, Essfeld D, Hoffmann U. et al. Postural effect on cardiac output, oxygen uptake and lactate during cycle exercise of varying intensity. European journal of applied physiology and occupational physiology 1994; 68: 30-35
- 15 Nelson ME, Rejeski WJ, Blair SN. et al. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007; 116: 1094-1105
- 16 Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. American journal of physiology Heart and circulatory physiology 2007; 293: H583-H589
- 17 Squara P, Denjean D, Estagnasie P. et al. Noninvasive cardiac output monitoring (NICOM): A clinical validation . Intensive care medicine 2007; 33: 1191-1194
- 18 Barak OF, Ovcin ZB, Jakovljevic DG. et al. Heart rate recovery after submaximal exercise in four different recovery protocols in male athletes and non-athletes. Journal of sports science & medicine 2011; 10: 369-375
- 19 O’Leary DS. Autonomic mechanisms of muscle metaboreflex control of heart rate. J Appl Physiol 1985 1993; 74: 1748-1754
- 20 Smit AA, Halliwill JR, Low PA. et al. Pathophysiological basis of orthostatic hypotension in autonomic failure. The Journal of physiology 1999; 519 Pt 1 1-10
- 21 Carter JB, Banister EW, Blaber AP. Effect of endurance exercise on autonomic control of heart rate. Sports medicine (Auckland, NZ) 2003; 33: 33-46