Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2016; 26(06): 309-318
DOI: 10.1055/s-0042-120047
Wissenschaft und Forschung
© Georg Thieme Verlag KG Stuttgart · New York

Prozessmodulierte Mikrostromtherapie (ZYTOENERGESE®) im Rahmen der stationären Frührehabilitation nach Knie- bzw. Hüftoperationen

Eine doppelblind randomisierte Plazebo-kontrollierte PilotstudieProcess Modulated Microcurrent Therapy (ZYTOENERGESE®) during Early Inpatient Rehabilitation after Knee- and Hip OperationsA Double-blind, Randomized, Plazebo-controlled Pilot Trial
T. Bochdansky
1   Physikalische Medizin und Rehabilitation Physikalische Sportheilkunde, Feldkirch, Österreich
,
K. Ammer
2   Medical Imaging Research Unit, University of South Wales, UK
› Author Affiliations
Further Information

Publication History

13 June 2016

24 October 2016

Publication Date:
12 December 2016 (online)

Zusammenfassung

Obwohl die positiven Effekte der Elektrotherapie empirisch schon seit mehreren Jahrhunderten bekannt sind, gibt es trotz neuester Forschungsergebnisse (inkl. Nobelpreis) noch immer viele offene physiologische Fragen über die Wirkmechanismen, vor allem im molekular- und membranphysiologischen Bereich. Unklar ist auch, welche elektrischen Parameter für welche therapeutischen Ziele am optimalsten sind.

In einer pragmatischen, randomisierten und plazebokontrollierten Studie wurde die zusätzliche Effektivität einer neuen Form der Elektrotherapie, die prozessmodulierte Mikrostromtherapie (PMMST, Zytoenergese®), klinisch im Rahmen einer 14-tägigen stationären Frühmobilisation nach Knie- und Hüftgelenksoperationen (Totalendoprothesen) getestet.

Die Ergebnisse von 114 der 120 teilnehmenden Patienten wurden ausgewertet. Ungefähr 1 Woche postoperativ wurden bei Aufnahme, bei Entlassung und bei einer Kontrolle nach 1 Monat (=ca. 50 Tage post OP) neben klinischen Tests auch die Balancefähigkeit apparativ getestet. Sämtliche klinische Parameter zeigten eine deutliche Verbesserung am Ende des stationären Aufenthaltes, deren Zunahme bei der Nachkontrolle geringer ausgeprägt war als nach der Phase der Frühmobilisation.

Nach Anwendung tatsächlicher Mikroströme konnte bei Patienten nach Hüftoperationen eine deutlichere Verbesserung der symmetrischen Beinbelastung als bei Patienten nach Knieoperationen festgestellt werden.

Die Mechanismen, über die PMMST zur Wiederherstellung der Mobilität von Patienten nach Hüft- oder Kniegelenksoperationen beitragen kann, bleiben vorerst unklar. Denkbar sind eine Verbesserung der Muskelfunktion und die Förderung der Integration in den Alltagsgebrauch. Weitere Untersuchungen dazu sind gerechtfertigt, ebenso weitere Studien zur Anwendung bei der Schmerzbehandlung und Wundheilung.

Abstract

Although the positive effects of electrotherapy are known empirically for several centuries, there are still many physiological questions about the mechanisms of action, especially in the field of molecular and membrane physiology despite of latest research results (including Nobel Prize). It is also unclear what electrical parameters for which therapeutic goals are most optimal.

In a pragmatic, randomized, Plazebo-controlled study, we investigated the additional clinical effectiveness of a new form of electrotherapy, the process-modulated micro current therapy (PMMST, Zytoenergese®, during a 14-day stationary early mobilization after knee and hip operations (endoprosthesis).

The results of 114 of the 120 participating patients were evaluated. In addition to clinical tests the balance ability was recorded with a test equipment at admission approximately 1 week after surgery, at dismissal and at a follow-up 1 month after surgery (approx. 50 days). All clinical parameters showed a significant improvement at the end of the inpatient stay, which was more pronounced in the phase of early mobilization than in the follow-up period.

A better improvement in symmetrical weight distribution of the feet was observed after application of real micro-currents in patients after hip surgery than in patients after knee surgery.

The mechanisms, by which PMMST can contribute to restore the mobility of patients after hip or knee surgery, remain for the moment unclear. Improving the muscular function and the promotion of integration in everyday use are possible explanations. Further investigations to this topic and to pain therapy and wound management are warranted.

 
  • Literatur

  • 1 Günther R, Jantsch H. Physikalische Medizin. Berlin Heidelberg: Springer; 1986
  • 2 Bossert F, Vogedes K. Elektrotherapie, Licht und Strahlentherapie. München: Urban & Fischer; 2014
  • 3 Galvani A. De viribus electricitatis in motu muscularii. De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii. vol. VII. Bononiae: Ex Typographia Instituti Scientiarum; 1792
  • 4 Du Bois-Reymond E. Gesammelte Abhandlungen zur Nerven- und Muskelphysik. Leipzig: Verlag v.Veit & Comp; 1875
  • 5 Goldman DE. Potential, impedance and rectification in membranes. J Gen Physiol 1943; 20: 37-60
  • 6 MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angewandte Chemie International Edition 2004; 43: 4265-4277
  • 7 Long SB, Tao X, Campbell EB et al. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 2007; 450: 376-382
  • 8 Uemura M, Maeshige N, Koga Y. Monophasic pulsed 200-μa current promotes galvanotaxis with polarization of actin filament and integrin α2β1 in human dermal fibroblasts. Eplasty 2016; 16: e6 eCollection 2016
  • 9 Curtis D, Fallows S, Morris M et al. The efficacy of frequency specific microcurrent therapy on delayed onset muscle soreness. J Bodyw Mov Ther 2010; 14: 272-279
  • 10 McMakin CR, Oschman JL. Visceral and somatic disorders: tissue softening with frequency-specific microcurrent. J Altern Complement Med. 2013; 19: 170-177
  • 11 Poltawski L, Johnson M, Watson T. Microcurrent therapy in the management of chronic tennis elbow: pilot studies to optimize parameters. Physiother Res Int 2012; 17: 157-166
  • 12 Naeser M, Hahn KA, Liebermann BE et al. Carpal tunnel syndrome pain treated with low-level laser and microamperes transcutaneous electric nerve stimulation: A controlled study. Arch Phys Med Rehabil 2002; 83: 978-988
  • 13 Ohno Y, Fujiya H, Goto A et al. Microcurrent electrical nerve stimulation facilitates regrowth of mouse soleus muscle. Int J Med Sci 2013; 10: 1286-1294
  • 14 Mayer St K. Die Arndt-Schulzsche Regel. Klinische Wochenschrift 1925; 4: 1649-1649
  • 15 Brock N. Experimentelle Beiträge zum „Arndt-Schulzschen Gesetz“. Naumyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie 1938; 190: 191-194
  • 16 Funk JO, Kruse A, Kirchner H. Cytokine production after helium neon laser irradiation in cultures of human peripheral blood mononuclear cells. J Photochemistry Photobiology B: Biology 1992; 16: 347-355
  • 17 Sommer AP, Pinheiro AL, Mester AR et al. Biostimulatory windows in low-intensity laser activation: lasers, scanners and NASA’s light-emitting diode array system. J Clin Laser Med Surg 2001; 19: 29-33
  • 18 Poltawski L, Johnson M, Watson T. Microcurrent therapy in the management of chronic tennis elbow: pilot studies to optimize parameters. Physiother Res Int 2012; 17: 157-166
  • 19 Cheng Cheng N, Van Hoof H, Bockx E et.al. The effects of electric currents on ATP generation, protein synthesis, and membrane transport of rat skin. Clin Orthop Relat Res 1982; 264-272
  • 20 Puhar I, Amalija Kapudija A, Adrian Kasaj A et al. Efficacy of electrical neuromuscular stimulation in the treatment of chronic periodontitis. J Periodontal Implant Sci 2011; 41: 117-122
  • 21 Nessler JP, Mass DP. Direct-current electrical stimulation of tendon healing in vitro. Clin Orthop Relat Res 1987; 303-312
  • 22 Carley PJ, Wainapel SF. Electrotherapy for acceleration of wound healing: low intensity direct current. Arch Phys Med Rehabil 1985; 66: 443-446
  • 23 Ciombor DM, Aaron RK. The role of electrical stimulation in bone repair. Foot Ankle Clin 2005; 10: 579-593 vii
  • 24 Zuzzi DC, Ciccone Cde C, Neves LM et al. Evaluation of the effects of electrical stimulation on cartilage repair in adult male rats. Tissue Cell. 2013; 45: 275-281
  • 25 Farahani RM, Kloth LC. The hypothesis of ‘biophysical matrix contraction’: wound contraction revisited. Int Wound J 2008; 5: 477-482
  • 26 Bassett CA, Becker RO. Generation of electric potentials by bone in response to mechanical stress. Science 1962; 137: 1063-1064
  • 27 Korelo RI, Kryczyk M, Garcia C et al. Wound healing treatment by high frequency ultrasound, microcurrent, and combined therapy modifies the immune response in rats. Braz J Phys Ther 2016. pii: S1413-35552016005000141. [Epub ahead of print]
  • 28 Asadi MR, Torkaman G, Hedayati M et al. Role of sensory and motor intensity of electrical stimulation on fibroblastic growth factor-2 expression, inflammation, vascularization, and mechanical strength. J Rehab Res 2013; 50: 489-498
  • 29 Talebi G, Torkaman G, Firouzabadi M et al. Effect of micro-amperage direct current stimulation on injury potential and ist realtion to wound surface area in guinea pig. Cont Proc IEEE Eng Med Biol Soc 2007; 35: 16-19
  • 30 Foulds IS, Barker AT. Human skin battery potentials and their possible role in wound healing. Br J Dermatol 1983; 109: 515-522
  • 31 Kloth LC. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments and clinical trials. Int J Low Extrem Wounds 2005; 4: 23-44
  • 32 Kim JH, Choi H, Suh MJ et al. Effect of biphasic electrical current stimulation on IL-1β-stimulated annulus fibrosus cells using in vitro microcurrent generating chamber system. Spine 2013; 38: 1368-1376
  • 33 Gossrau G, Wähner M, Kuschke M et al. Microcurrent transcutaneous electric nerve stimulation in painful diabetic neuropathy: a randomized Plazebo-controlled study. Pain Med 2011; 12: 953-960
  • 34 Bannuru RR, McAlindon TE, Sullivan MC et al. Effectiveness and implications of alternative plazebo treatments: a systematic review and network meta-analysis of osteoarthritis trials. Ann Intern Med. 2015; 163: 365-372
  • 35 McCrory P. The power of Plazebo. Br J Sports Med 2005; 39: 125
  • 36 Jakovljevic M. The Plazebo-nocebo response: controversies and challenges from clinical and research perspective. Eur Neuropsychopharmacol 2014; 24: 333-341
  • 37 Benedetti F, Carlino E, Piedimonte A. Increasing uncertainty in CNS clinical trials: the role of Plazebo, nocebo, and Hawthorne effects. Lancet Neurol 2016. pii: S1474-4422(16)00066-1. [Epub ahead of print]
  • 38 White P, Lewith G, Hopwood V et al. The Plazebo needle, is it a valid and convincing Plazebo for use in acupuncture trials? A randomised, single-blind, cross-over pilot trial. Pain 2003; 106: 401-409
  • 39 Bochdansky Th, Böckelberger M, Laube W et al Evaluation zweier interdisziplinärer Nachsorgestationen. Phys Med Rehab Kuror 2009; 19: 256-265
  • 40 Folstein MF, Folstein SE, McHugh PR. Mini-Mental State (a practical method for grading the state of patients for the clinician). Journal of Psychiatric Research 1975; 12: 189-198
  • 41 Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 1997; 26: 15-19
  • 42 Duncan PW, Weiner DK, Chandler J et al. Functional reach: a new clinical measure of balance. J Gerontol 1990; 45: M192-M197
  • 43 Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991; 39: 142-148
  • 44 Guralnik JM, Simonsick EM, Ferrucci L et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 1994; 49: M85-M94
  • 45 Perera S, Mody S, Woodman R et al. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc 2006; 54: 743-749
  • 46 Wright AA, Cook CE, Baxter GD et al. A comparison of 3 methodological approaches to defining major clinically important improvement of 4 performance measures in patients with hip osteoarthritis. J Orthop Sports Phys Ther 2011; 41: 319-327
  • 47 Andersson EI, Lin CC, Smeets RJ. Performance tests in people with chronic low back pain: responsiveness and minimal clinically important change. Spine 2010; 35: E1559-E1563
  • 48 Steffen T, Seney M. Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the unified Parkinson disease rating scale in people with parkinsonism. Phys Ther 2008; 88: 733-746
  • 49 Tubach F, Ravaud P, Baron G et al. Evaluation of clinically relevant states in patient reported outcomes in knee and hip osteoarthritis: the patient acceptable symptom state. Ann Rheum Dis 2005; 64: 34-37
  • 50 Hsieh YW, Wang CH, Wu SC et al. Establishing the minimal clinically important difference of the Barthel Index in stroke patients. Neurorehabil Neural Repair 2007; 21: 233-238
  • 51 Kohen-Raz R. Application of tetra-ataxiametric posturography in clinical and developmental diagnosis. Percept Mot Skills 1991; 73: 635-656
  • 52 Schwesig R. Das posturale System in der Lebensspanne. Schriften zur Sportwissenschaft. Hamburg: Verlag Dr Kovac; 2006
  • 53 Schwesig R, Fischer D, Lauenroth A et al. Can falls be predicted with gait analytical and posturographic measurement systems? A prospective follow-up study in a nursing home population. Clin Rehabil 2013; 27: 183-190
  • 54 Kollmitzer J, Ebenbichler GR, Sabo A et al. Effects of back extensor strength training versus balance training on postural control. Med Sci Sports Exerc 2000; 32: 1770-1776
  • 55 Schwesig R, Becker S, Fischer D. Intraobserver reliability of posturography in healthy subjects. Somatosensory & motor research 2014; 31: 16-22
  • 56 Kim HS, Yun DH, Yoo SD et al. Balance control and knee osteoarthritis severity. Ann Rehabil Med 2011; 35: 701-709
  • 57 Rockstroh G, Schleicher W, Krummenauer F. Der Nutzen der während einer stationären Anschlussheilbehandlung applizierten Mikrostromtherapie bei Patienten nach Implantation einer Knie-Totalendoprothese – eine randomisierte, klinische Studie. Rehabilitation 2010; 3: 173-179
  • 58 Kirkpatrick DR, McEntire DM, Hambsch ZJ et al. Therapeutic basis of clinical pain modulation. Clin Transl Sci 2015; 8: 848-856
  • 59 Poltawski L, Watson T. Bioelectricity and microcurrent therapy for tissue healing – a narrative review. Physical therapy rev 2009; 14: 104-114