Subscribe to RSS
DOI: 10.1055/s-0042-118601
Metabolomics-Guided Isolation of Anti-trypanosomal Metabolites from the Endophytic Fungus Lasiodiplodia theobromae
Publication History
received 09 March 2016
revised 19 September 2016
accepted 28 September 2016
Publication Date:
19 October 2016 (online)
Abstract
Fungal endophytes offer diverse and unique secondary metabolites, making these organisms potential sources of promising drug leads. The application of high-resolution-liquid chromatography mass spectrometry and nuclear magnetic resonance-based metabolomics to fungal endophytes is practical in terms of dereplication studies and the mining of bioactive compounds. In this paper, we report the application of metabolomics in parallel with anti-trypanosomal assays to determine the ideal conditions for the medium-scale fermentation of the endophyte Lasiodiplodia theobromae. The 1H NMR comparison between the active versus inactive fractions identified several unique chemical fingerprints belonging to the active fractions. Furthermore, by integrating high-resolution-liquid chromatography mass spectrometry data with multivariate data analysis, such as orthogonal partial least squares-discriminant analysis (OPLS-DA) and the bioactivity results of the fractions of L. theobromae, the anti-trypanosomal agents were easily discerned. With available databases such as Antibase and Dictionary of Natural Products coupled to MZmine through in-house algorithms optimized in our laboratory, the predicted metabolites were readily identified prior to isolation. Fractionation was performed on the active fractions and three known compounds were isolated, namely, cladospirone B, desmethyl-lasiodiplodin, and R-(−)-mellein. Cladospirone B and desmethyl-lasiodiplodin were among the predicted compounds generated by the OPLS-DA S-plot, and these compounds exhibited good activity against Trypanosoma brucei brucei with minimum inhibitory concentrations of 17.8 µM and 22.5 µM, respectively.
Key words
fungal endophytes - Lasiodiplodia theobromae - Botryosphaeriaceae - anti-trypanosomal activity - HR-LCMS - NMR - metabolomics - chemometrics-
References
- 1 Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75: 311-335
- 2 Challis GL. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 2008; 154: 1555-1569
- 3 Gongora-Castillo E, Buell CR. Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence. Nat Prod Rep 2013; 30: 490-500
- 4 Yang JY, Karr JR, Watrous JD, Dorrestein PC. Integrating ‘-omics’ and natural product discovery platforms to investigate metabolic exchange in microbiomes. Curr Opin Chem Biol 2011; 15: 79-87
- 5 Verpoorte R, Choi Y, Kim H. NMR-based metabolomics at work in phytochemistry. Phytochem Rev 2007; 6: 3-14
- 6 Moco S, Vervoort J, Bino RJ, De Vos RCH, Bino R. Metabolomics technologies and metabolite identification. Trends Analyt Chem 2007; 26: 855-866
- 7 Sumner LW, Lei Z, Nikolau BJ, Saito K. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 2015; 32: 212-229
- 8 Lang G, Mayhudin NA, Mitova MI, Sun L, van der Sar S, Blunt JW, Cole ALJ, Ellis G, Laatsch H, Munro MHG. Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 2008; 71: 1595-1599
- 9 Vasilev N, Ebel R, Edrada RA, Fuss E, Alfermann AW, Ionkova I, Petrova A, Repplinger M, Schmidt TJ. Metabolic profiling of lignan variability in Linum species of section Syllinum native to Bulgaria. Planta Med 2008; 74: 273-280
- 10 Frisvad JC, Rank C, Nielsen KF, Larsen TO. Metabolomics of Aspergillus fumigatus . Med Mycol 2008; 47: S53-S71
- 11 Wolfender JL, Marti G, Ferreira Queiroz E. Advances in techniques for profiling crude extracts and for the rapid identification of natural products: dereplication, quality control and metabolomics. Curr Org Chem 2010; 14: 1808-1832
- 12 Funari CS, Eugster PJ, Martel S, Carrupt PA, Wolfender JL, Silva DHS. High resolution ultra high pressure liquid chromatography – time-of-flight mass spectrometry dereplication strategy for the metabolite profiling of Brazilian Lippia species. J Chromatogr A 2012; 1259: 167-178
- 13 Geiger M, Desanglois G, Hogeveen K, Fessard V, Leprêtre T, Mondeguer F, Guitton Y, Hervé F, Séchet V, Grovel O, Pouchus YF, Hess P. Cytotoxicity, fractionation and dereplication of extracts of the dinoflagellate Vulcanodinium rugosum, a producer of pinnatoxin G. Mar Drugs 2013; 11: 3350-3371
- 14 Zhang T, Omar R, Siheri W, Al Mutairi S, Clements C, Fearnley J, Edrada-Ebel R, Watson D. Chromatographic analysis with different detectors in the chemical characterisation and dereplication of African propolis. Talanta 2014; 120: 181-190
- 15 Hou Y, Braun DR, Michel CR, Klassen JL, Adnani N, Wyche TP, Bugni TS. Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 2012; 84: 4277-4283
- 16 Ellis GA, Hou Y, Braun DR, Wyche TP, Adnani N, Vazquez-Rivera E, Bugni TS. LC/MS Untargeted metabolomics for prioritizing marine invertebrate-associated bacteria for discovery of natural products. Planta Med 2013; 79: PK7
- 17 Samat N, Tan PJ, Shaari K, Abas F, Lee HB. Prioritization of natural extracts by LC–MS-PCA for the identification of new photosensitizers for photodynamic therapy. Anal Chem 2014; 86: 1324-1331
- 18 Macintyre L, Zhang T, Viegelmann C, Martinez IJ, Cheng C, Dowdells C, Abdelmohsen UR, Gernert C, Hentschel U, Edrada-Ebel R. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar Drugs 2014; 12: 3416-3448
- 19 Kim HK, Wilson EG, Choi YH, Verpoorte R. Metabolomics: a tool for anticancer lead-finding from natural products. Planta Med 2010; 76: 1094-1102
- 20 Ali K, Iqbal M, Yuliana N, Lee YJ, Park S, Han S, Lee JW, Lee HS, Verpoorte R, Choi Y. Identification of bioactive metabolites against adenosine A1 receptor using NMR-based metabolomics. Metabolomics 2013; 9: 778-785
- 21 Bohni N, Cordero-Maldonado ML, Maes J, Siverio-Mota D, Marcourt L, Munck S, Kamuhabwa AR, Moshi MJ, Esguerra CV, de Witte PA. Integration of microfractionation, qNMR and zebrafish screening for the in vivo bioassay-guided isolation and quantitative bioactivity analysis of natural products. PLoS One 2013; 8: e64006
- 22 Chagas-Paula DA, Zhang T, Oliveira TB, Edrada-Ebel R, Da Costa FB. Discovery of plant anti-inflammatory biomarkers by machine learning algorithms and metabolomic studies. Planta Med 2013; 79: SL27
- 23 Abdelmohsen U, Cheng C, Viegelmann C, Zhang T, Grkovic T, Ahmed S, Quinn R, Hentschel U, Edrada-Ebel R. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins a and b from a marine sponge associated-Actinokineospora sp. EG49. Mar Drugs 2014; 12: 1220-1244
- 24 Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14: 111-129
- 25 Bacon CW, White J. Microbial Endophytes. Basel: CRC Press; 2000
- 26 Dreyfuss M, Chapela IH. Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP. ed. The Discovery of natural Products with therapeutic Potential. London, United Kingdom: Butterworth-Heinemann; 1994: 49-80
- 27 Hawksworth DL. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 1991; 95: 641-655
- 28 Hawksworth DL. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 2001; 105: 1422-1432
- 29 Tsuchinari M, Shimanuki K, Hiramatsu F, Murayama T, Koseki T, Shiono Y. Fusapyridons A and B, novel pyridone alkaloids from an endophytic fungus, Fusarium sp. YG-45. Z Naturforsch B J Chem Sci 2007; 62: 1203-1207
- 30 Zilla MK, Qadri M, Pathania AS, Strobel GA, Nalli Y, Kumar S, Guru SK, Bhushan S, Singh SK, Vishwakarma RA, Riyaz-Ul-Hassan S, Ali A. Bioactive metabolites from an endophytic Cryptosporiopsis sp. inhabiting Clidemia hirta . Phytochemistry 2013; 95: 291-297
- 31 Isaka M, Berkaew P, Intereya K, Komwijit S, Sathitkunanon T. Antiplasmodial and antiviral cyclohexadepsipeptides from the endophytic fungus Pullularia sp. BCC 8613. Tetrahedron 2007; 63: 6855-6860
- 32 Singh SB, Ondeyka JG, Tsipouras N, Ruby C, Sardana V, Schulman M, Sanchez M, Pelaez F, Stahlhut MW, Munshi S, Olsen DB, Lingham RB. Hinnuliquinone, a C2-symmetric dimeric non-peptide fungal metabolite inhibitor of HIV-1 protease. Biochem Biophys Res Commun 2004; 324: 108-113
- 33 Chen X, Shi Q, Lin G, Guo S, Yang J. Spirobisnaphthalene analogues from the endophytic fungus Preussia sp. J Nat Prod 2009; 72: 1712-1715
- 34 Ge HM, Yu ZG, Zhang J, Wu JH, Tan RX. Bioactive alkaloids from endophytic Aspergillus fumigatus . J Nat Prod 2009; 72: 753-755
- 35 Campos FF, Rosa LH, Cota BB, Caligiorne RB, Rabello ALT, Alves TMA, Rosa CA, Zani CL. Leishmanicidal metabolites from Cochliobolus sp., an endophytic fungus isolated from Piptadenia adiantoides (fabaceae). PLoS Negl Trop Dis 2008; 2: e348
- 36 Moreno E, Varughese T, Spadafora C, Arnold AE, Coley PD, Kursar TA, Gerwick WH, Cubilla-Rios L. Chemical constituents of the new endophytic fungus Mycosphaerella sp. nov. and their anti-parasitic activity. Nat Prod Commun 2011; 6: 835
- 37 Simarro PP, Diarra A, Postigo JAR, Franco JR, Jannin JG. The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 2011; 5: e1007
- 38 Jacobs RT, Nare B, Phillips MA. State of the art in African trypanosome drug discovery. Curr Top Med Chem 2011; 11: 1255
- 39 Webster J, Weber R. Introduction to Fungi. Cambridge: Cambridge University Press; 2007
- 40 Pluskal T, Castillo S, Villar-Briones A, Orešič M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010; 11: 395
- 41 Robotti E, Marengo E. Chemometric multivariate tools for candidate biomarker identification: LDA, PLS-DA, SIMCA, ranking-PCA. Methods Mol Biol 2016; 1384: 237-267
- 42 Haoula Z, Ravipati S, Stekel DJ, Ortori CA, Hodgman C, Daykin C, Raine-Fenning N, Barrett DA, Atiomo W. Lipidomic analysis of plasma samples from women with polycystic ovary syndrome. Metabolomics 2015; 11: 657-666
- 43 Schulz B, Sucker J, Aust H, Krohn K, Ludewig K, Jones P, Döring D. Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 1995; 99: 1007-1015
- 44 Aldridge D, Galt S, Giles D, Turner W. Metabolites of Lasiodiplodia theobromae . J Chem Soc C 1971; 1623-1627
- 45 Bode HB, Walker M, Zeeck A. Cladospirones B to I from Sphaeropsidales sp. F-24′707 by variation of culture conditions. European J Org Chem 2000; 2000: 3185-3193
- 46 Hazalin NAM, Lim SM, Cole AL, Majeed ABA, Ramasamy K. Apoptosis induced by desmethyl-lasiodiplodin is associated with upregulation of apoptotic genes and downregulation of monocyte chemotactic protein-3. Anticancer Drugs 2013; 24: 852-861
- 47 Tawfike A, Viegelmann C, Edrada-Ebel R. Metabolomics and Dereplication Strategies in natural Products. In: Roessner U, Dias DA. eds. Metabolomics Tools for natural Product Discovery. New Jersey: Humana Press; 2013: 227-244
- 48 Bafor EE, Lim CV, Rowan EG, Edrada-Ebel R. The leaves of Ficus exasperata Vahl (Moraceae) generates uterine active chemical constituents. J Ethnopharmacol 2012; 145: 803-812