RSS-Feed abonnieren
DOI: 10.1055/s-0042-118600
Ophthalmologisches Monitoring der diabetischen Neuropathie am Mausmodell
Ophthalmological Monitoring of Diabetic Neuropathy in a Mouse ModelPublikationsverlauf
eingereicht 20. September 2016
akzeptiert 04. Oktober 2016
Publikationsdatum:
16. Dezember 2016 (online)
Zusammenfassung
Der Diabetes mellitus führt auch bei einer erfolgreichen Blutglukosekontrolle mit einer Normalisierung des HbA1c-Wertes bei Patienten häufig zu Spätkomplikationen, zu denen neben mikrovaskulären und makrovaskulären Schäden vor allem die diabetische Polyneuropathie zählt. Betroffen sind periphere Nerven, deren Schädigung zu Empfindungsstörungen und starken Schmerzen führen kann. Bei diesen Nerven handelt es sich vornehmlich um Aδ- und C-Fasern, die neben der Haut auch im subbasalen Nervenplexus der Kornea zu finden sind. Die Abbildung des subbasalen Nervenplexus mittels mikroskopischer Techniken ermöglicht eine sehr frühzeitige und objektive Darstellung der Neuropathie, wie sie mittels Hautbiopsie nur invasiv möglich ist. Wir haben einen thy1-YFP-Mausstamm verwendet, in dem periphere Nerven durch Fluoreszenzanregung darstellbar sind. Mittels 2-Photonen-Mikroskopie konnten wir hochauflösende 3-dimensionale Darstellungen des subbasalen Nervenplexus der Kornea dieser Mäuse generieren. Durch Injektion von Streptozotocin haben wir in thy1-YFP-Mäusen einen Diabetes mellitus induziert. Wir konnten zeigen, dass es parallel zum Anstieg der Blutglukose zu einem Verlust subbasaler Nervenfasern vor allem im Zentrum der Kornea kommt. Eine nachfolgende Behandlung der Tiere mit Insulin führte zur Normalisierung der Blutglukose und zu einer Zunahme der subbasalen Nervenfasern. Somit ist dieses Mausmodell sehr gut geeignet, die Pathogenese der diabetischen Polyneuropathie weiterführend zu untersuchen, mit dem Ziel, kausale Therapieansätze zu ihrer Behandlung zu entwickeln.
Abstract
Patients with diabetes mellitus suffer from late damage, including microvascular and macrovascular complications and diabetic polyneuropathy, even though blood glucose is well controlled and the HbA1c value normalised. Peripheral nerves are affected, and when these are damaged, this can result in disturbed sensation and pain. Such nerves are mainly Aδ und C fibres, which are present in the skin, but also in the subbasal nerve plexus of the cornea. Imaging of the subbasal nerve plexus using microscopic techniques allows a very early and objective view of neuropathy, which is only possible invasively by skin biopsy. We have used a thy1-YFP mouse strain in which the peripheral nerves are detectable by fluorescence excitation. Using two photon microscopy, we produced high resolution three dimensional images of the corneal subbasal nerve plexus of these mice. We induced diabetes mellitus in thy1-YFP mice by injection of streptocotocin. We showed that the increase in blood glucose was accompanied by a loss of subbasal nerve fibres, mainly in the centre of the cornea. Subsequent treatment of the animals with insulin normalised blood glucose and was accompanied by an increase in subbasal nerve fibres. Thus, this model is highly suited to investigate the pathogenesis of diabetic polyneuropathy, with the aim of developing new causal strategies to treat the disease.
-
Literatur
- 1 Erie EA, McLaren JW, Kittleson KM et al. Corneal subbasal nerve density: a comparison of two confocal microscopes. Eye Contact Lens 2008; 34: 322-325
- 2 Guthoff RF, Wienss H, Hahnel C et al. Epithelial innervation of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea 2005; 24: 608-613
- 3 Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea – a major review. Clin Exp Ophthalmol 2009; 37: 100-117
- 4 Midena E, Cortese M, Miotto S et al. Confocal microscopy of corneal sub-basal nerve plexus: a quantitative and qualitative analysis in healthy and pathologic eyes. J Refract Surg 2009; 25 (Suppl. 01) S125-S130
- 5 Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea 2001; 20: 374-384
- 6 Tesfaye S, Vileikyte L, Rayman G et al. Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes Metab Res Rev 2011; 27: 629-638
- 7 Abbott CA, Malik RA, van Ross ER et al. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011; 34: 2220-2224
- 8 Papanas N, Vinik AI, Ziegler D. Neuropathy in prediabetes: does the clock start ticking early?. Nat Rev Endocrinol 2011; 7: 682-690
- 9 Tesfaye S, Boulton AJ, Dyck PJ et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33: 2285-2293
- 10 Vinik A, Casellini C, Nevoret ML. Diabetic Neuropathies. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, eds. Endotext (Internet). South Dartmouth (MA): MDText.com, Inc.; 2000. – 2016
- 11 Ziegler D, Strom A, Lobmann R et al. High prevalence of diagnosed and undiagnosed polyneuropathy in subjects with and without diabetes participating in a nationwide educational initiative (PROTECT study). J Diabetes Complications 2015; 29: 998-1002
- 12 Katsiki N, Papanas N, Mikhailidis DP et al. Glycated hemoglobin A1c (HbA1c) and diabetes: a new era?. Curr Med Res Opin 2011; 27 (Suppl. 03) S7-S11
- 13 Boulton AJ, Malik RA, Arezzo JC et al. Diabetic somatic neuropathies. Diabetes Care 2004; 27: 1458-1486
- 14 Ziegler D, Papanas N, Zhivov A et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 2014; 63: 2454-2463
- 15 Van Acker N, Rage M, Sluydts E et al. Automated PGP9.5 immunofluorescence staining: a valuable tool in the assessment of small fiber neuropathy?. BMC Res Notes 2016; 9: 280
- 16 Lauria G, Hsieh ST, Johansson O et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 2010; 17: 903-912 e44–49
- 17 Lauria G, Bakkers M, Schmitz C et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst 2010; 15: 202-207
- 18 Malik RA. Which test for diagnosing early human diabetic neuropathy?. Diabetes 2014; 63: 2206-2208
- 19 Rosenberg ME, Tervo TM, Immonen IJ et al. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2000; 41: 2915-2921
- 20 Tavakoli M, Mitu-Pretorian M, Petropoulos IN et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 2013; 62: 254-260
- 21 Tavakoli M, Quattrini C, Abbott C et al. Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 2010; 33: 1792-1797
- 22 Zhivov A, Winter K, Hovakimyan M et al. Imaging and quantification of subbasal nerve plexus in healthy volunteers and diabetic patients with or without retinopathy. PLoS One 2013; 8: e52157
- 23 Hammes HP, Lemmen KD, Bertram B et al. Diabetic retinopathy and maculopathy. Exp Clin Endocrinol Diabetes 2014; 122: 387-390
- 24 Feng Y, Busch S, Gretz N et al. Crosstalk in the retinal neurovascular unit – lessons for the diabetic retina. Exp Clin Endocrinol Diabetes 2012; 120: 199-201
- 25 Reichard M, Hovakimyan M, Guthoff RF et al. In vivo visualisation of murine corneal nerve fibre regeneration in response to ciliary neurotrophic factor. Exp Eye Res 2014; 120: 20-27
- 26 Reichard M, Hovakimyan M, Wree A et al. Comparative in vivo confocal microscopical study of the cornea anatomy of different laboratory animals. Curr Eye Res 2010; 35: 1072-1080
- 27 Reichard M, Weiss H, Poletti E et al. Age-related changes in murine corneal nerves. Curr Eye Res 2016; 41: 1021-1028
- 28 Meijering E, Jacob M, Sarria JC et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 2004; 58: 167-176
- 29 Dehghani C, Pritchard N, Edwards K et al. Morphometric stability of the corneal subbasal nerve plexus in healthy individuals: a 3-year longitudinal study using corneal confocal microscopy. Invest Ophthalmol Vis Sci 2014; 55: 3195-3199
- 30 Wang C, Fu T, Xia C et al. Changes in mouse corneal epithelial innervation with age. Invest Ophthalmol Vis Sci 2012; 53: 5077-5084
- 31 Ehmke T, Leckelt J, Reichard M et al. In vivo nonlinear imaging of corneal structures with special focus on BALB/c and streptozotocin-diabetic Thy1-YFP mice. Exp Eye Res 2016; 146: 137-144
- 32 Leckelt J, Guimarães P, Kott A et al. Early detection of diabetic neuropathy by investigating CNFL and IENFD in thy1-YFP mice. J Endocrinol 2016; DOI: 10.1530/JOE-16-0284. [Epub ahead of print]
- 33 Chen YS, Chung SS, Chung SK. Noninvasive monitoring of diabetes-induced cutaneous nerve fiber loss and hypoalgesia in thy1-YFP transgenic mice. Diabetes 2005; 54: 3112-3118
- 34 Ehmke T, Krüger A, Ripken T et al. [Nonlinear microscopy in ophthalmology: principles and pathbreaking applications]. Klin Monatsbl Augenheilkd 2015; 232: 1365-1373
- 35 Köhler B, Allgeier S, Eberle F et al. [Large-scale imaging of corneal nerve fibres by guided eye movements]. Klin Monatsbl Augenheilkd 2014; 231: 1170-1173
- 36 Davidson EP, Coppey LJ, Kardon RH et al. Differences and similarities in development of corneal nerve damage and peripheral neuropathy and in diet-induced obesity and type 2 diabetic rats. Invest Ophthalmol Vis Sci 2014; 55: 1222-1230
- 37 Pritchard N, Dehghani C, Edwards K et al. Utility of assessing nerve morphology in central cornea versus whorl area for diagnosing diabetic peripheral neuropathy. Cornea 2015; 34: 756-761
- 38 Ferrari G, Hajrasouliha AR, Sadrai Z et al. Nerves and neovessels inhibit each other in the cornea. Invest Ophthalmol Vis Sci 2013; 54: 813-820
- 39 Yorek MS, Obrosov A, Shevalye H et al. Effect of diet-induced obesity or type 1 or type 2 diabetes on corneal nerves and peripheral neuropathy in C57Bl/6J mice. J Peripher Nerv Syst 2015; 20: 24-31
- 40 Yorek MS, Obrosov A, Shevalye H et al. Effect of glycemic control on corneal nerves and peripheral neuropathy in streptozotocin-induced diabetic C57Bl/6J mice. J Peripher Nerv Syst 2014; 19: 205-217
- 41 Müller LJ, Marfurt CF, Kruse F et al. Corneal nerves: structure, contents and function. Exp Eye Res 2003; 76: 521-542
- 42 Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 2008; 9: 301-314
- 43 Bierhaus A, Humpert PM, Morcos M et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 2005; 83: 876-886
- 44 Lukic IK, Humpert PM, Nawroth PP et al. The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann N Y Acad Sci 2008; 1126: 76-80
- 45 Hidmark A, Fleming T, Vittas S et al. A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 2014; 122: 201-207
- 46 Win MT, Yamamoto Y, Munesue S et al. Regulation of RAGE for attenuating progression of diabetic vascular complications. Exp Diabetes Res 2012; 2012: 894605
- 47 Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep 2011; 11: 244-252
- 48 Vinik A, Ullal J, Parson HK et al. Diabetic neuropathies: clinical manifestations and current treatment options. Nat Clin Pract Endocrinol Metab 2006; 2: 269-281
- 49 De Clerck EE, Schouten JS, Berendschot TT et al. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol 2015; 3: 653-663