Pneumologie 2016; 70(12): 813-825
DOI: 10.1055/s-0042-117747
Fort- und Weiterbildung
© Georg Thieme Verlag KG Stuttgart · New York

Quantifizierung von Ventilation, Inflammation, Perfusion und Struktur (VIPS)

Innovative pulmonale Funktionsanalytik mittels CT und MRT auf dem Weg in die klinische RoutineQuantification of Ventilation, Inflammation, Perfusion and Structure (VIPS)Innovative Analysis of Pulmonary Function with CT and MRI on the Road to Clinical Routine
J. Renne
Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
,
J. Vogel-Claussen
Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Publication Date:
08 December 2016 (online)

Zusammenfassung

In der pulmonalen Bildgebung wurden in den letzten Jahren Fortschritte erzielt, die mit den aktuellen Methoden neben einer rein morphologischen Beschreibung von Lungenveränderungen zunehmend auch eine lokalisierte Quantifizierung der Lungenfunktion ermöglichen. In diesem Artikel werden die aktuellen klinischen Standards zur Lungenbildgebung zusammengefasst sowie in der Forschung angewandte Techniken vorgestellt. Anhand aktueller Studien wird der Einsatz quantitativer Bildgebung mittels Computertomografie und Magnetresonanztomografie bei COPD, Asthma, pulmonaler Hypertonie und zystischer Fibrose erläutert und ein Ausblick auf zukünftige Anwendungen gegeben.

Abstract

Technical innovation in pulmonary imaging during the recent years has led to a shift from morphological description of pulmonary pathologies to regional quantification of pulmonary function. This article summarizes current clinical standards in pulmonary imaging and introduces the reader to new innovative techniques of functional lung imaging. In the context of actual clinical studies for COPD, asthma, pulmonary hypertension and cystic fibrosis the application of quantitative imaging methods using computed tomography and magnetic resonance imaging is demonstrated and possible future applications are discussed.

 
  • Literatur

  • 1 Das M. Conventional imaging for thoracic diagnostics. Der Pneumologe 2011; 8: 217-224
  • 2 Wormanns D. High-resolution computed tomography (HRCT). Der Pneumologe 2011; 8: 225-233
  • 3 Hansell DM, Bankier AA, MacMahon H et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008; 246: 697-722
  • 4 Wormanns D, Hamer OW. [Glossary of Terms for Thoracic Imaging--German Version of the Fleischner Society Recommendations]. RöFo : Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin 2015; 187: 638-661
  • 5 Lynch DA, Austin JHM, Hogg JC et al. CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease: A Statement of the Fleischner Society. Radiology 2015; 277: 192-205
  • 6 Dresel S, Förster GJ. Nuclear medicine procedures in the diagnosis of lung diseases. Der Pneumologe 2011; 8: 260-265
  • 7 Hoeper MM, Ghofrani HA, Gorenflo M et al. Diagnostics and treatment of pulmonary hypertension: European guidelines 2009. Kardiologe 2010; 4: 189-207
  • 8 Kruger SJ, Nagle SK, Couch MJ et al. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2015; 43: 295-315
  • 9 Roos JE, McAdams HP, Kaushik SS et al. Hyperpolarized Gas MR Imaging. Magn Reson Imaging Clin N Am 2015; 23: 217-229
  • 10 Svenningsen S, Kirby M, Starr D et al. Hyperpolarized 3He and 129Xe MRI: Differences in asthma before bronchodilation. J Magn Reson Imaging 2013; 38: 1521-1530
  • 11 Mugler JP, Altes TA, Ruset IC et al. Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. Proc Natl Acad Sci U S A 2010; 107: 21707-21712
  • 12 Driehuys B, Martinez-Jimenez S, Cleveland ZI et al. Chronic obstructive pulmonary disease: Safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology 2012; 262: 279-289
  • 13 Lutey BA, Lefrak SS, Woods JC et al. Hyperpolarized 3He MR imaging: Physiologic monitoring observations and safety considerations in 100 consecutive subjects. Radiology 2008; 248: 655-661
  • 14 Eun JC, Joon BS, Hyun WG et al. Xenon ventilation CT with a dual-energy technique of dual-source CT: Initial experience. Radiology 2008; 248: 615-624
  • 15 Edelman RR, Hatabu H, Tadamura E et al. Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 1996; 2: 1236-1239
  • 16 Jakob PM, Wang T, Schultz G et al. Assessment of Human Pulmonary Function Using Oxygen-Enhanced T1 Imaging in Patients with Cystic Fibrosis. Magn Reson Med 2004; 51: 1009-1016
  • 17 Ohno Y, Nishio M, Koyama H et al. Asthma: Comparison of dynamic oxygen-Enhanced mr imaging and quantitative thin-Section ct for evaluation of clinical treatment. Radiology 2014; 273: 907-916
  • 18 Renne J, Lauermann P, Hinrichs JB et al. Chronic Lung Allograft Dysfunction: Oxygen-enhanced T1-Mapping MR Imaging of the Lung. Radiology 2015; 276: 266-273
  • 19 Couch MJ, Ball IK, Li T et al. Pulmonary ultrashort echo time 19F MR imaging with inhaled fluorinated gas mixtures in healthy volunteers: Feasibility. Radiology 2013; 269: 903-909
  • 20 Halaweish AF, Moon RE, Foster WM et al. Perfluoropropane gas as a magnetic resonance lung imaging contrast agent in humans. Chest 2013; 144: 1300-1310
  • 21 Deimling M, Jellus V, Geiger B et al. Time resolved lung ventilation imaging by Fourier decomposition. Proceedings of the Annual Meeting of the ISMRM 2008; 2639
  • 22 Bauman G, Puderbach M, Deimling M et al. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of Fourier decomposition in proton MRI. Magn Reson Med 2009; 62: 656-664
  • 23 Voskrebenzev A, Gutberlet M, Becker L et al. Reproducibility of fractional ventilation derived by Fourier decomposition after adjusting for tidal volume with and without an MRI compatible spirometer. Magn Reson Med 2015; ePub DOI: 10.1002/mrm.26047.
  • 24 Bauman G, Lützen U, Ullrich M et al. Pulmonary functional imaging: Qualitative comparison of fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology 2011; 260: 551-559
  • 25 Franquet T. Imaging of pneumonia: trends and algorithms. Eur Respir J 2001; 18: 196-208
  • 26 Franquet T. Imaging of pulmonary viral pneumonia. Radiology 2011; 260: 18-39
  • 27 Vogel-Claussen J, Renne J, Hinrichs J et al. Quantification of pulmonary inflammation after segmental allergen challenge using turbo-inversion recovery-magnitude magnetic resonance imaging. Am J Respir Crit Care Med 2014; 189: 650-657
  • 28 Renne J, Hinrichs J, Schönfeld C et al. Noninvasive quantification of airway inflammation following segmental allergen challenge with functional MR imaging: a proof of concept study. Radiology 2015; 274: 267-275
  • 29 Tiddens HAWM, Stick SM, Wild JM et al. Respiratory tract exacerbations revisited: Ventilation, inflammation, perfusion, and structure (VIPS) monitoring to redefine treatment. Pediatr Pulmonol 2015; 50: S57-S65
  • 30 Kluge A, Luboldt W, Bachmann G. Acute pulmonary embolism to the subsegmental level: diagnostic accuracy of three MRI techniques compared with 16-MDCT. AJR Am J Roentgenol 2006; 187: W7-W14
  • 31 Hueper K, Parikh MA, Prince MR et al. Quantitative and semiquantitative measures of regional pulmonary microvascular perfusion by magnetic resonance imaging and their relationships to global lung perfusion and lung diffusing capacity: the multiethnic study of atherosclerosis chronic obstructive pulmonary disease study. Invest Radiol 2013; 48: 223-230
  • 32 Hueper K, Vogel-Claussen J, Parikh MA et al. Pulmonary Microvascular Blood Flow in Mild Chronic Obstructive Pulmonary Disease and Emphysema. The MESA COPD Study. Am J Respir Crit Care Med 2015; 192: 570-580
  • 33 Schoenfeld C, Cebotari S, Hinrichs J et al. MR Imaging-derived Regional Pulmonary Parenchymal Perfusion and Cardiac Function for Monitoring Patients with Chronic Thromboembolic Pulmonary Hypertension before and after Pulmonary Endarterectomy. Radiology 2016; 279: 925-934
  • 34 Schönfeld C, Cebotari S, Voskrebenzev A et al. Performance of perfusion-weighted Fourier decomposition MRI for detection of chronic pulmonary emboli. J Magn Reson Imaging 2015; 42: 72-79
  • 35 Bauman G, Puderbach M, Heimann T et al. Validation of Fourier decomposition MRI with dynamiccontrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 2013; 82: 2371-2377
  • 36 MacNee W. Computed tomography-derived pathological phenotypes in COPD. Eur Respir J 2016; 48: 10-13
  • 37 Ostridge K, Wilkinson TMA. Present and future utility of computed tomography scanning in the assessment and management of COPD. Eur Respir J 2016; 48: 216-228
  • 38 Johannessen A, Skorge TD, Bottai M et al. Mortality by level of emphysema and airway wall thickness. Am J Respir Crit Care Med 2013; 187: 602-608
  • 39 Galbán CJ, Han MK, Boes JL et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 2012; 18: 1711-1715
  • 40 Bhatt SP, Soler X, Wang X et al. Association between functional small airways disease and FEV1 decline in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2016; 194: 178-184
  • 41 Maldonado F, Moua T, Rajagopalan S et al. Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J 2014; 43: 204-212
  • 42 Rahmer J, Börnert P, Groen J et al. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 2006; 55: 1075-1082
  • 43 Dournes G, Menut F, Macey J et al. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 2016; 1-10
  • 44 Roach DJ, Crémillieux Y, Fleck RJ et al. Ultrashort Echo-Time Magnetic Resonance Imaging Is a Sensitive Method for the Evaluation of Early Cystic Fibrosis Lung Disease. Ann Am Thorac Soc 2016; DOI: 10.1513/AnnalsATS.201603–203OC.
  • 45 Fain SB, Panth SR, Evans MD et al. Early emphysematous changes in asymptomatic smokers: Detection with 3He MR imaging. Radiology 2006; 239: 875-883
  • 46 Washko GR, Parraga G, Coxson HO. Quantitative pulmonary imaging using computed tomography and magnetic resonance imaging. Respirology 2012; 17: 432-444