Rofo 2016; 188(12): 1163-1168
DOI: 10.1055/s-0042-116440
Abdomen
© Georg Thieme Verlag KG Stuttgart · New York

Frequency Selective Non-Linear Blending to Improve Image Quality in Liver CT

Frequenzselektives, nichtlineares Fenstern zu Steigerung der Bildqualität in der Computertomografie der Leber
M. N. Bongers
1   Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Germany
,
G. Bier
1   Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Germany
,
C. Kloth
1   Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Germany
,
C. Schabel
1   Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Germany
,
J. Fritz
2   Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, United States
,
K. Nikolaou
1   Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Germany
,
M. Horger
1   Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Germany
› Author Affiliations
Further Information

Publication History

27 July 2016

28 August 2016

Publication Date:
01 December 2016 (online)

Abstract

Purpose: To evaluate the effects of a new frequency selective non-linear blending (NLB) algorithm on the contrast resolution of liver CT with low intravascular concentration of iodine contrast.

Materials and Methods: Our local ethics committee approved this retrospective study. The informed consent requirement was waived. CT exams of 25 patients (60 % female, mean age: 65 ± 16 years of age) with late phase CT scans of the liver were included as a model for poor intrahepatic vascular contrast enhancement. Optimal post-processing settings to enhance the contrast of hepatic vessels were determined. Outcome variables included signal-to-noise (SNR) and contrast-to-noise ratios (CNR) of hepatic vessels and SNR of liver parenchyma of standard and post-processed images. Image quality was quantified by two independent readers using Likert scales.

Results: The post-processing settings for the visualization of hepatic vasculature were optimal at a center of 115HU, delta of 25HU, and slope of 5. Image noise was statistically indifferent between standard and post-processed images. The CNR between the hepatic vasculature (HV) and liver parenchyma could be significantly increased for liver veins (CNRStandard 1.62 ± 1.10, CNRNLB 3.6 ± 2.94, p = 0.0002) and portal veins (CNRStandard 1.31 ± 0.85, CNRNLB 2.42 ± 3.03, p = 0.046). The SNR of liver parenchyma was significantly higher on post-processed images (SNRNLB 11.26 ± 3.16, SNRStandard 8.85 ± 2.27, p = 0.008). The overall image quality and depiction of HV were significantly higher on post-processed images (NLBDHV: 4 [3 – 4.75], StandardDHV: 2 [1.3 – 2.5], p = < 0.0001; NLBIQ: 4 [4 – 4], StandardIQ: 2 [2 – 3], p = < 0.0001).

Conclusion: The use of a frequency selective non-linear blending algorithm increases the contrast resolution of liver CT and can improve the visibility of the hepatic vasculature in the setting of a low contrast ratio between vessels and the parenchyma.

Key Points:

• Using the new frequency selective non-linear blending algorithm is feasible in contrast-enhanced liver CT.

• Optimal post-processing settings make it possible to significantly increase the contrast resolution of liver CT without affecting image noise.

• Especially in low contrast CT images, the novel algorithm is capable of significantly increasing image quality.

Citation Format:

• Bongers MN, Bier G, Kloth C et al. Frequency Selective Non-Linear Blending to Improve Image Quality in Liver CT. Fortschr Röntgenstr 2016; 188: 1163 – 1168

Zusammenfassung

Ziel: Ziel der Studie war es herauszufinden welche Effekte durch einen neuartigen, frequenzselektiven Algorithmus der nichtlinearen Fensterung (NLF) zur Steigerung des Bildkontrastes bei primär gering kontrastierten CT-Bildern erzielt werden können.

Material und Methoden: Diese retrospektive Studie wurde von der lokalen Ethikkommission begutachtet und genehmigt. Als Modell für eine geringe Gefäßkontrastierung wurden CT-Spätphasen der Leber von 25 Patienten (60 % weiblich, mittleres Alter 65 ± 16 Jahre) ausgewählt. Die optimalen Post-Processing-Einstellungen zur Steigerung der hepatischen Gefäßkontrastierung wurden subjektiv ermittelt. Es wurde das Signal-zu-Rausch-Verhältnis (SNR) und Kontrast-zu-Rausch-Verhältnis (CNR) der Lebergefäße sowie das SNR des Leberparenchyms mittels ROI-Analyse bestimmt und zwischen den Standard- und NLF-Bildern verglichen. Die subjektive Bildqualität wurde unter Verwendung von Likert-Skalen von zwei unabhängigen Radiologen bewertet.

Ergebnisse: Die optimalen Post-Processing-Einstellungen zur Darstellung der Lebergefäße waren ein Fensterzentrum von 115 HU und eine Fensterweite von 25 HU bei einer Steigung von 5. Das Bildrauschen zeigte keinen signifikanten Unterschied zwischen den Standard- und NLF-Bildern. Das CNR zwischen den Lebergefäßen und dem Leberparenchym konnte sowohl bzgl. der Lebervenen (CNRStandard 1,62 ± 1,10, CNRNLF 3,6 ± 2,94, p = 0,0002) als auch der Pfortader (CNRStandard 1,31 ± 0,85, CNRNLF 2,42 ± 3,03, p = 0,046) signifikant gesteigert werden. In den NLF-Bildern konnte ein signifikant höheres SNR des Leberparenchyms als in den Standard-Bildern festgestellt werden (SNRNLF 11,26 ± 3,16, SNRStandard 8,85 ± 2,27, p = 0,008). Die Gesamtbildqualität (BQ) und Beurteilbarkeit der Lebergefäße (BLG) war in den NLF-Bildern signifikant höher als in den Standard-Bildern (BLGNLF: 4 [3 – 4,75], BLGStandard: 2 [1,3 – 2,5], p = < 0,0001; IQNLF: 4 [4 – 4], IQStandard: 2 [2 – 3], p = < 0,0001).

Schlussfolgerung: Mittels frequenzselektiven, nichtlinearen Fensterung lässt sich der Kontrast in der CT der Leber steigern und die Beurteilbarkeit der Lebergefäße in gering kontrastierten CT-Bildern signifikant verbessern.

Kernaussagen:

• Der neuartige Post-Processing-Algorithmus der frequenzselektiven, nichtlinearen Fensterung lässt sich in der kontrastangehobenen CT der Leber einsetzen.

• Durch die optimalen Post-Processing-Einstellungen ist eine signifikante Steigerung des Kontrastes der Lebergefäße ohne Beeinflussung des Bildrauschens zu erzielen.

• Insbesondere bei primär gering kontrastierten CT-Bildern lässt sich durch den neuartigen Algorithmus die Bildqualität signifikant verbessern.

 
  • References

  • 1 Vignaux O, Gouya H, Augui J et al. Hepatofugal portal flow in advanced liver cirrhosis with spontaneous portosystemic shunts: effects on parenchymal hepatic enhancement at dual-phase helical CT. Abdominal imaging 2002; 27: 536-540
  • 2 Vignaux O, Legmann P, Coste J et al. Cirrhotic liver enhancement on dual-phase helical CT: comparison with noncirrhotic livers in 146 patients. American journal of roentgenology 1999; 173: 1193-1197
  • 3 Bongers MN, Schabel C, Krauss B et al. Noise-optimized virtual monoenergetic images and iodine maps for the detection of venous thrombosis in second-generation dual-energy CT (DECT): an ex vivo phantom study. European radiology 2015; 25: 1655-1664
  • 4 Apfaltrer P, Sudarski S, Schneider D et al. Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. European journal of radiology 2014; 83: 322-328
  • 5 Schabel C, Bongers M, Sedlmair M et al. Assessment of the hepatic veins in poor contrast conditions using dual energy CT: evaluation of a novel monoenergetic extrapolation software algorithm. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 2014; 186: 591-597
  • 6 Scholtz JE, Husers K, Kaup M et al. Evaluation of image quality and dose reduction of 80 kVp neck computed tomography in patients with suspected peritonsillar abscess. Clinical radiology 2015; 70: e67-e73
  • 7 Meyer M, Haubenreisser H, Schoepf UJ et al. Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology 2014; 273: 373-382
  • 8 Lehr JL, Capek P. Histogram equalization of CT images. Radiology 1985; 154: 163-169
  • 9 John A, Huda W, Scalzetti EM et al. Performance of a single lookup table (LUT) for displaying chest CT images. Academic radiology 2004; 11: 609-616
  • 10 Gomori JM, Steiner I. Non-linear CT windows. Computerized radiology: official journal of the Computerized Tomography Society 1987; 11: 21-27
  • 11 Sudarski S, Apfaltrer P, Nance Jr JW et al. Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions: an analysis in patients with gastrointestinal stromal tumor. Academic radiology 2014; 21: 514-522
  • 12 Lv P, Liu J, Wu R et al. Use of non-linear image blending with dual-energy CT improves vascular visualization in abdominal angiography. Clinical radiology 2014; 69: e93-e99
  • 13 Scholtz JE, Husers K, Kaup M et al. Non-linear image blending improves visualization of head and neck primary squamous cell carcinoma compared to linear blending in dual-energy CT. Clinical radiology 2015; 70: 168-175
  • 14 Ippolito D, Talei Franzesi C, Fior D et al. Low kV settings CT angiography (CTA) with low dose contrast medium volume protocol in the assessment of thoracic and abdominal aorta disease: a feasibility study. The British journal of radiology 2015; 88: 20140140
  • 15 Tang K, Li R, Lin J et al. The value of cerebral CT angiography with low tube voltage in detection of intracranial aneurysms. BioMed research international 2015; 2015: 876796
  • 16 Laqmani A, Regier M, Veldhoen S et al. Improved image quality and low radiation dose with hybrid iterative reconstruction with 80 kV CT pulmonary angiography. European journal of radiology 2014; 83: 1962-1969
  • 17 Fayad LM, Jin Y, Laine AF et al. Chest CT window settings with multiscale adaptive histogram equalization: pilot study. Radiology 2002; 223: 845-852
  • 18 Kaufmann S, Schulze M, Spira D et al. Modern multimodality diagnosis of portal vein infiltration in hepatocellular carcinoma and expected changes during current therapies. Acta radiologica 2015; 56: 1283-1292