Klin Monbl Augenheilkd 2016; 233(11): 1238-1243
DOI: 10.1055/s-0042-115411
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Zukünftige Entwicklungen bei implantierbaren Netzhautprothesen

Future Developments in Retinal Prostheses
P. Walter
Augenklinik, RWTH Aachen
› Author Affiliations
Further Information

Publication History

eingereicht 29 June 2016

akzeptiert 11 August 2016

Publication Date:
19 September 2016 (online)

Zusammenfassung

Implantierbare retinale Sehprothesen werden bereits in der Klinik eingesetzt. Bei blinden Patienten mit Retinitis pigmentosa (RP) lassen sich mit den bisherigen Systemen Phosphene auslösen, jedoch ist der messbare Sehschärfengewinn begrenzt. Die Ursachen hierfür liegen einerseits in dem eigentlichen retinalen Degenerationsprozess und andererseits in der zum Einsatz kommenden Technologie. Forschergruppen und Hersteller arbeiten an Lösungskonzepten und neuen Prototypen für implantierbare Sehprothesen, um diese Limitationen zu überwinden. Zu den Maßnahmen gehört die Vergrößerung der Fläche des Stimulators mit dem Ziel, ein größeres Gesichtsfeld wiederherzustellen, eine Erhöhung der Zahl der Elektroden, um das räumliche Auflösungsvermögen der Implantate zu verbessern und die Schaffung einer Registrierfunktion neben der eigentlichen Stimulation. Mit einer solchen Registrierfunktion könnte das Implantat Informationen über die unter den Elektroden liegenden Ganglienzellen gewinnen und so das Stimulationsmuster auf die jeweilige Situation anpassen. Neben der Implantation auf oder unter der Netzhaut werden auch Systeme entwickelt, die im Suprachoroidalraum, am Sehnerv, am Corpus geniculatum laterale oder direkt in der Sehrinde implantiert werden.

Abstract

Implantable retinal prostheses for the blind are already in use. In blind subjects suffering from retinitis pigmentosa (RP), these systems are able to induce phosphenes. However, the measurable gain in vision is limited. This is due to degeneration in the retina itself and to the technology, which is used in the currently available systems. Research groups and companies are working on solutions and prototypes to improve the outcome of electrical stimulation in the visual system. One improvement will be to enlarge the electrode array in order to restore a larger visual field. A second approach is to enlarge the number of electrodes and to place them at a higher density to improve the spatial resolution of the system. A third concept is to develop a recording unit within the electrode array to analyse ganglion cell behaviour underneath the electrode. This information can than be used to optimise the stimulation pattern. Not only retinal prostheses are under development but also systems to stimulate the retina from the suprachoroidal space, to directly stimulate the optic nerve or the lateral geniculate body or even the primary visual cortex.

 
  • Literatur

  • 1 Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hear Res 2008; 242: 3-21
  • 2 Ho AC, Humayun MS, Dorn JD et al. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology 2015; 122: 1547-1554
  • 3 Stingl K, Bartz-Schmidt KU, Besch D et al. Subretinal visual implant Alpha IMS – clinical trial interim report. Vision Res 2015; 111: 149-160
  • 4 Jones BW, Pfeiffer RL, Ferrell WD et al. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res 2016; [Epub ahead of print]
  • 5 Meffin H. What limits spatial perception with retinal implants?. IEEE International Conference on Image Processing; 2013: 1545-1549
  • 6 Ferrari S, Di Iorio E, Barbaro V et al. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 2011; 12: 238-249
  • 7 Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res 2004; 81: 123-137
  • 8 Jones BW, Kondo M, Terasaki H et al. Retinal remodeling. Jpn J Ophthalmol 2012; 56: 289-306
  • 9 Jones BW, Kondo M, Terasaki H et al. Retinal remodeling in the Tg P347 L rabbit, a large-eye model of retinal degeneration. J Comp Neurol 2011; 519: 2713-2733
  • 10 Biswas S, Haselier C, Mataruga A et al. Pharmacological analysis of intrinsic neuronal oscillations in rd10 retina. PLoS One 2014; 9: e99075
  • 11 Cho A, Ratliff C, Sampath A et al. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes. J Neural Eng 2016; 13: 025001
  • 12 Zeck G. Aberrant activity in degenerated retinas revealed by electrical imaging. Front Cell Neurosci 2016; 10: 25
  • 13 Stone JL, Barlow WE, Humayun MS et al. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 1992; 110: 1634-1639
  • 14 Luo YH, da Cruz L. The Argus(®) II Retinal Prosthesis System. Prog Retin Eye Res 2016; 50: 89-107
  • 15 Kitiratschky VB, Stingl K, Wilhelm B et al. Safety evaluation of “retina implant alpha IMS”–a prospective clinical trial. Graefes Arch Clin Exp Ophthalmol 2014; 253: 381-387
  • 16 Chen SC, Hallum LE, Lovell NH et al. Learning prosthetic vision: a virtual-reality study. IEEE Trans Neural Syst Rehabil Eng 2005; 13: 249-255
  • 17 Dagnelie G. Visual prosthetics. In: Dagnelie G, ed. Visual Prosthetics. Boston, MA: Springer Science & Business Media; 2011
  • 18 Walter P, Szurman P, Vobig M et al. Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 1999; 19: 546-552
  • 19 Majji AB, Humayun MS, Weiland JD et al. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 1998; 40: 2073-2081
  • 20 Tano Y. [Towards clinical application of a visual prosthesis]. Nippon Ganka Gakkai Zasshi 2009; 113: 315-342
  • 21 Fujikado T, Kamei M, Kishima H et al. Testing of chronically implanted 49-channel retinal prosthesis by suprachoroidal-transretinal stimulation (STS) in patients with advanced retinitis pigmentosa. Invest Ophthalmol Vis Sci 2015; 56: 3816
  • 22 Allen PJ, Ayton LN, Yeoh J et al. A prototype suprachoroidal retinal prosthesis: device reliability and patient safety report of a 2 year clinical study. Invest Ophthalmol Vis Sci 2015; 56: 750
  • 23 Ayton LN, Blamey PJ, Guymer RH et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One 2014; 9: e115239
  • 24 Barnes N, Scott AF, Lieby P et al. Vision function testing for a suprachoroidal retinal prosthesis: effects of image filtering. J Neural Eng 2016; 13: 036013
  • 25 Velikay-Parel M, Ivastinovic D, Georgi T et al. A test method for quantification of stimulus-induced depression effects on perceptual threshold in epiretinal prosthesis. Acta Ophthalmol 2013; 91: E595-E602
  • 26 Palanker D, Vankov A, Huie P et al. Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2005; 2: S105-S120
  • 27 Palanker D, Vankov A, Huie P et al. Development of a high-resolution optoelectronic retinal prosthesis. Faseb Journal 2006; 20: A844
  • 28 Mandel Y, Goetz G, Lavinsky D et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat Commun 2013; 4: 1980
  • 29 Lorach H, Goetz G, Smith R et al. Photovoltaic restoration of sight with high visual acuity. Nat Med 2015; 21: 476-482
  • 30 Rizzo 3rd JF, Shire DB, Kelly SK et al. Development of the Boston retinal prosthesis. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 3135-3138
  • 31 Waschkowski F, Hesse S, Rieck AC et al. Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomed Eng Online 2014; 13: 11
  • 32 Lohmann TK, Rieck AC, Waschkowski F et al. Post-surgical findings in 10 rabbits implanted with the VLARS (Very Large Array Retina Stimulator) device in two shapes over a period of 12 weeks. Invest Ophthalmol Vis Sci 2015; 56: 748
  • 33 Marzouk AM, Stanitzki A, Kokozinski R. Towards pulse-density modulated functional electrical stimulation of neural cells with passive membranes. In: Heinen S, ed. PRIME 2012: 8th Conference on Ph. D. Research in Microelectronics & Electronics. Berlin: VDE; 2012: 11-14
  • 34 Schloesser M, Cota O, Heil R et al. Embedded device for simultaneous recording and stimulation for retina implant research. IEEE SENSORS 2013; Baltimore, USA: IEEE; 2013: 1-4
  • 35 Heil R, Schloesser M, Offenhäusser A et al. Automated electrical stimulation and recording for retina implant research by LabVIEW configured standalone data acquisition device. Proceedings of the SICE Annual Conference 2014. USA: IEEE; 2014: 1662-1667
  • 36 Johnen S, Meissner F, Krug M et al. Properties of retinal precursor cells grown on vertically aligned multiwalled carbon nanotubes generated for the modification of retinal implant-embedded microelectrode arrays. J Ophthalmol 2016; 2016: 2371021
  • 37 Ohta J. Implantable CMOS imaging devices for bio-medical applications. 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS). USA: IEEE; 2011: 1-4
  • 38 Sakaguchi H, Kamei M, Nishida K et al. Implantation of a newly developed direct optic nerve electrode device for artificial vision in rabbits. J Artif Organs 2012; 15: 295-300
  • 39 Brelén ME, De Potter P, Gersdorff M et al. Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis. Case report. J Neurosurg 2006; 104: 593-597
  • 40 Bourkiza B, Vurro M, Jeffries A et al. Visual acuity of simulated thalamic visual prostheses in normally sighted humans. PLoS One 2013; 8: e73592
  • 41 Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol 1968; 196: 479-493
  • 42 Davis TS, Parker RA, House PA et al. Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque. J Neural Eng 2012; 9: 065003
  • 43 Normann RA, Greger B, Greger BA et al. Toward the development of a cortically based visual neuroprosthesis. J Neural Eng 2009; 6: 035001
  • 44 Tochitsky I, Kramer RH. Optopharmacological tools for restoring visual function in degenerative retinal diseases. Curr Opin Neurobiol 2015; 34: 74-78
  • 45 Dalkara D, Goureau O, Marazova K et al. Let there be light: gene and cell therapy for blindness. Hum Gene Ther 2016; 27: 134-147