Subscribe to RSS
DOI: 10.1055/s-0042-112809
The Impact of Time on Decorporation Efficacy After a “Dirty Bomb” Attack Studied by Simulation
Publication History
received 04 May 2016
accepted 08 July 2016
Publication Date:
17 August 2016 (online)
Abstract
Background: In the case of a nuclear or radiological incident, there is a risk of external and internal contamination with radionuclides in addition to external irradiation. There is no consensus whether decorporation treatment should be initiated right away on spec or pending the results of internal dosimetry to determine the indication.
Method: Based on biokinetic models for plutonium-239, americium-241 and cesium-137, the efficacy of a decorporation treatment using DTPA or Prussian blue was simulated depending on the initiation time and the duration of treatment for different invasion pathways and physicochemical properties of the inhaled compounds.
Results: For the same level of radioactivity incorporated, the committed effective dose increases with the speed of the invasion process. The impact of the initiation time of a decorporation treatment is particularly important when the absorption of the radionuclide is fast. Even if started early after incorporation, the therapeutic efficacy is less for americium-241 or cesium-137 compared to plutonium-239. Therapeutic efficacy increases with treatment duration up to about 90 days for plutonium-239 and cesium-137, whereas a prolongation of the treatment over this limit may further enhance efficacy in the case of americium-241.
Conclusion: In the case of a nuclear incident, several fractions with different but a priori unknown physicochemical properties may be inhaled. Thus, decorporation therapy should be started as soon as possible after the incorporation of the radionuclide(s), as a loss of efficacy caused by a delay of treatment initiation possibly cannot be compensated later on. Treatment should be pursued for several months.
-
References
- 1 Rump A. Kombinationsverletzungen im Medizinischen A-Schutz: Prioritäten-orientierte Behandlungsgrundsätze. Wehrmed MSchr 2014; 58: 146-151
- 2 Weickhardt U. Der Strahlenunfall. Informationsschrift zur Behandlung von Strahlenverletzten. Luzern: Schweizerische Unfallversicherungsanstalt Arbeitsmedizin; 2001
- 3 International Commission on Radiological Protection (ICRP) . Summary description of respiratory tract dosimetry model. Ann ICRP 1994; 24: 106-120
- 4 International Commission on Radiological Protection (ICRP) . Dosimetric model for the gastrointestinal tract. Ann ICRP 1979; 2: 30-34
- 5 National Council on Radiation Protection (NCRP) . Development of a biokinetic model for radionuclide-contaminated wounds and procedures for their assessment, dosimetry and treatment. NCRP Report 156. Bethesda: National Council on Radiation Protection; 2007
- 6 International Commission on Radiological Protection (ICRP) . Age-dependent doses to members of the public from intake of radionuclides – Part 2 ingestion dose coefficients. ICRP Publication 67. Ann ICRP 1993; 23
- 7 Frenzel N, Pieper B, Abend M. Antidottherapie nach Radionuklid-Inkorporation bei radiologischen Bedrohungsszenarien. Wehrmed MSchr 2009; 53: 301-305
- 8 Melo DR, Lipsztein JL, Leggett R et al. Efficacy of Prussian blue on 137 Cs decorporation therapy. Health Phys 2014; 106: 592-597
- 9 Rump A, Stricklin D, Lamkowski A et al. Reconsidering decorporation strategies after the incorporation of radionuclides. Health Phys in press
- 10 ASN (Autorité de Sureté Nucléaire) . Guide national. Intervention médicale en cas d´évènement nucléaire ou radiologique. Version V 3.6 2008
- 11 Waller EA, Stodilka RZ, Leach K et al. Literature Survey on Decorporation of Radionuclides from the Human Body. Defence R&D Canada – Ottawa Technical Memorandum 2002-042. Ottawa: Defence R&D Canada – Ottawa; 2002
- 12 Edsall K. Radiological and nuclear incidents and terrorism. In: Walter FG. (ed.). Advanced Hazmat Life Support (AHLS) Provider Manual. Tucson: University of Arizona Emergency Medicine Research Center & American Academy of Clinical Toxicology; 2003
- 13 NCRP (National Council on Radiation Protection and Measurements) . Population monitoring and radionuclide decorporation following a radiological or nuclear accident. Bethesda MD: NCRP; 2010
- 14 Von Winterfeldt D Rosoff A risk and economic analysis of dirty bomb attacks on the ports of Los Angeles and Long Beach. Risk Analysis 2007; 27: 533-546
- 15 Stricklin D, Millage K, Rodriguez J et al. Plutonium-238/239 decorporation model. Technical Report DTRA-TR-15-03. Fort Belvoir VA: Defence Threat Reduction Agency; 2014
- 16 Stricklin D, Millage K, Rodriguez J et al. Americium-241 decorporation model. Technical Report DTRA-TR-15-02. Fort Belvoir VA: Defense Threat Reduction Agency; 2014
- 17 Altagracia-Martinez M, Kravzov-Jinich J, Martínez-Núnez JM et al. Prussian blue as an antidote for radioactive thallium and cesium poisoning. Orphan Drugs: Research and Reviews 2012; 2: 13-21
- 18 Leiterer A, Bardot I, Ménétrier F et al. Medical countermeasures after a radiological event: An update from the CATO project. Int J Radiat Biol 2014; 90: 1043-1047
- 19 Stather JW, Smith H, Bailey MR et al. The retention of 14C-DTPA in human volunteers after inhalation or intravenous injection. Health Phys 1983; 44: 45-52
- 20 Wiechen A, Rühle H, Vogl K. Bestimmung der massebezogenen Aktivität von Radionukliden. Messanleitungen für die „Überwachung radioaktiver Stoffe in der Umwelt und externer Strahlung“ ISSN 1865-8725 2013;
- 21 Leggett RW. A retention-excretion model for americium in humans. Health Phys 1992; 62: 288-310
- 22 Leggett RW, Williams LR, Melo DR et al. A physiologically based biokinetic model for cesium in the human body. Sci Total Environ 2003; 317: 235-255
- 23 Leggett RW, Eckerman KF, Khokhryakov VF et al. Mayak worker study: an improved biokinetic model for reconstructing doses from internally deposited plutonium. Radiat Res 2005; 164: 111-122
- 24 Bailey MR, Ansoborlo E, Guilmette RA et al. Updating the ICRP human respiratory tract model. Radiat Prot Dosimetry 2007; 127: 31-34
- 25 Stricklin D, Millage K, Rodriguez J et al. Cesium-137 decorporation model. Technical Report DTRA-TR-15-01. Fort Belvoir VA: Defense Threat Reduction Agency; 2014
- 26 Sueda K. Orally administered penta-ethyl ester prodrug of DTPA for the decorporation of americium-241. Doctoral dissertation. Chapel Hill: University of North Carolina, Eshelman School of Pharmacy; 2014
- 27 Anderegg G. Critical evaluation of stability constants of metal complexes or complexones for biomedical and environmental applications. IUPAC Technical Report. Pure Appl Chem 2005; 77: 1445-1495
- 28 Hormann V, Fischer H. Materialsammlung zur internen Radiodekontamination von Personen. Vorhaben-Nr. 0046/07/BMS (UFOPLAN). Ressortforschungsberichte zur kerntechnischen Sicherheit und zum Strahlenschutz BfS-RESFOR-18/09, urn:nbn:de:0221-2009082147. Salzgitter: Bundesamt für Strahlenschutz; 2009
- 29 Davesne E, Paquet F, Ansoborlo E et al. Absorption of plutonium compounds in the respiratory tract. J Radiol Prot 2010; 30: 5
- 30 Breustedt B, Blanchardon E, Berard P et al. Biokinetic modelling of DTPA decorporation therapy: the CONRAD approach. Radiation Protection Dosimetry 2009; 134: 38-48
- 31 Breustedt B, Blanchardon E, Bérard P et al. The CONRAD approach to biokinetic modeling of DTPA decorporation therapy. Health Phys 2010; 99: 547-552
- 32 Derendorf H, Garrett ER. Pharmakokinetik. Einführung in die Theorie und Relevanz für die Arzneimitteltherapie. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 1987
- 33 Schankar GN, Weber W, Doyle-Eisele M et al. Efficacy of a novel orally administered formulation of DTPA tablets for decorporating an intravenously injected radionuclide: A comparison with intravenously administered licensed DTPA. Drug Develop Res 2012; 73: 290-298
- 34 Yang YT, Di Pasqua AJ, He W et al. Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid. Carbohyd Polym 2013; 92: 1915-1920