Geburtshilfe Frauenheilkd 2016; 76(07): 799-808
DOI: 10.1055/s-0042-107078
Original Article
GebFra Science
Georg Thieme Verlag KG Stuttgart · New York

Maternal Serum Lipid, Estradiol, and Progesterone Levels in Pregnancy, and the Impact of Placental and Hepatic Pathologies

Mütterlicher Lipid-, Estradiol- und Progesteronspiegel in der Schwangerschaft in Abhängigkeit von Plazenta- und Leberpathologien
U. Pecks
1   Department of Obstetrics and Gynecology, University Hospital of the RWTH, Aachen, Germany
3   Department of Obstetrics and Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
,
W. Rath
3   Department of Obstetrics and Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
,
N. Kleine-Eggebrecht
1   Department of Obstetrics and Gynecology, University Hospital of the RWTH, Aachen, Germany
,
N. Maass
3   Department of Obstetrics and Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
,
F. Voigt
1   Department of Obstetrics and Gynecology, University Hospital of the RWTH, Aachen, Germany
,
T. W. Goecke
1   Department of Obstetrics and Gynecology, University Hospital of the RWTH, Aachen, Germany
,
M. G. Mohaupt
2   Department of Nephrology, Hypertension and Clinical Pharmacology and Department of Clinical Research, Inselspital University Hospital Bern, Bern, Switzerland
,
G. Escher
2   Department of Nephrology, Hypertension and Clinical Pharmacology and Department of Clinical Research, Inselspital University Hospital Bern, Bern, Switzerland
› Author Affiliations
Further Information

Publication History

received 11 September 2015
revised 05 April 2016

accepted 20 April 2016

Publication Date:
20 July 2016 (online)

Abstract

Objective: Lipids and steroid hormones are closely linked. While cholesterol is the substrate for (placental) steroid hormone synthesis, steroid hormones regulate hepatic lipid production. The aim of this study was to quantify circulating steroid hormones and lipid metabolites, and to characterize their interactions in normal and pathological pregnancies with a focus on hepatic and placental pathologies. Methods: A total of 216 serum samples were analyzed. Group A consisted of 32 patients with uncomplicated pregnancies who were analyzed at three different time-points in pregnancy (from the first through the third trimester) and once post partum. Group B consisted of 36 patients (24th to 42nd week of gestation) with pregnancy pathologies (IUGR n = 10, preeclampsia n = 13, HELLP n = 6, intrahepatic cholestasis n = 7) and 31 controls with uncomplicated pregnancies. Steroid profiles including estradiol, progesterone, and dehydroepiandrosterone were measured by GC-MS and compared with lipid concentrations. Results: In Group A, cholesterol and triglycerides correlated positively with estradiol (cholesterol ρ = 0.50, triglycerides ρ = 0.57) and progesterone (ρ = 0.49, ρ = 0.53) and negatively with dehydroepiandrosterone (ρ = − 0.47, ρ = − 0.38). Smoking during pregnancy affected estradiol concentrations, leading to lower levels in the third trimester compared to non-smoking patients (p < 0.05). In Group B, cholesterol levels were found to be lower in IUGR pregnancies and in patients with HELLP syndrome compared to controls (p < 0.05). Steroid hormone concentrations of estradiol (p < 0.05) and progesterone (p < 0.01) were lower in pregnancies with IUGR. Discussion: Lipid and steroid levels were affected most in IUGR pregnancies, while only minor changes in concentrations were observed for other pregnancy-related disorders. Each of the analyzed entities displayed specific changes. However, since the changes were most obvious in pregnancies complicated by IUGR and only minor changes were observed in pregnancies where patients had impaired liver function, our data suggests that placental rather than maternal hepatic function strongly determines lipid and steroid levels in pregnancy.

Zusammenfassung

Zielsetzung: Lipide und Steroidhormone stehen in wechselseitiger Beziehung zueinander. Cholesterin ist Ausgangssubstanz für die (plazentare) Steroidhormonsynthese. Die Lipidproduktion in der Leber wird von Steroidhormonen reguliert. Ziel der Studie war es, die Konzentration von Steroidhormonen und Lipiden im Blut im Verlauf der Schwangerschaft und bei Schwangerschaftspathologien mit Beteiligung von Leber oder Plazenta zu quantifizieren. Methoden: 216 Serumproben wurden analysiert. Gruppe A bestand aus 32 Patientinnen mit unkomplizierter Schwangerschaft, denen zu drei Zeitpunkten im Schwangerschaftsverlauf sowie einmal postpartal Blut abgenommen wurde. Gruppe B bestand aus 36 Patientinnen (24.–42. SSW) mit Schwangerschaftspathologien (intrauterine Wachstumsrestriktion [IUGR] n = 10, Präeklampsie n = 13, HELLP-Syndrom n = 6, intrahepatische Cholestase n = 7) sowie 31 Frauen mit unkomplizierter Schwangerschaft. Ein Steroidprofil einschließlich Estradiol, Progesteron und Dehydroepiandrosteron wurde mit der Gaschromatografie-Massenspektrometrie (GC-MS) erstellt und mit Lipidkonzentrationen verglichen. Ergebnisse: In der Gruppe A korrelierten Cholesterin- und Triglyzeridwerte positiv mit Estradiol (Cholesterin ρ = 0,50, Triglyzeride ρ = 0,57) und Progesteron (ρ = 0,49, ρ = 0,53) und negativ mit Dehydroepiandrosteron (ρ = − 0,47, ρ = − 0,38). Rauchen während der Schwangerschaft führte zu niedrigeren Estradiolkonzentrationen im 3. Trimenon im Vergleich zu Nichtrauchern (p < 0,05). In der Gruppe B wies die IUGR-Gruppe deutlichste Veränderungen auf. Hier zeigten sich verglichen mit der Kontrollgruppe insbesondere Werte für Cholesterin, Estradiol (p < 0,05) und Progesteron (p < 0,01) erniedrigt. Diskussion: Jede der analysierten pathologischen Entitäten wies ein spezifisches Lipid- und Steroidhormon-Profil auf. Die deutlichsten Abweichungen von unkomplizierten Schwangerschaften zeigten Frauen mit IUGR. Schwangerschaften mit pathologischem Leberfunktionstest zeichneten sich durch eher geringe Veränderungen aus. Dies deutet darauf hin, dass Lipid- und Steroidspiegel während der Schwangerschaft stärker von der plazentaren als von der hepatischen Funktion bestimmt werden.

 
  • References

  • 1 Lobo RA, Skinner JB, Lippman JS et al. Plasma lipids and desogestrel and ethinyl estradiol: a meta-analysis. Fertil Steril 1996; 65: 1100-1109
  • 2 Al-Azzawi F, Wahab M, Sami S et al. Randomized trial of effects of estradiol in combination with either norethisterone acetate or trimegestone on lipids and lipoproteins in postmenopausal women. Climacteric 2004; 7: 292-300
  • 3 Walsh BW, Schiff I, Rosner B et al. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med 1991; 325: 1196-1204
  • 4 Homma H, Kurachi H, Nishio Y et al. Estrogen suppresses transcription of lipoprotein lipase gene. Existence of a unique estrogen response element on the lipoprotein lipase promoter. J Biol Chem 2000; 275: 11404-11411
  • 5 Grimes RW, Pepe GJ, Albrecht ED. Regulation of human placental trophoblast low-density lipoprotein uptake in vitro by estrogen. J Clin Endocrinol Metab 1996; 81: 2675-2679
  • 6 Baulieu EE, Dray F. CONVERSION OF H3-DEHYDROISOANDROSTERONE (3 BETA-HYDROXY-DELTA5-ANDROSTEN-17-ONE) SULFATE TO H3-ESTROGENS IN NORMAL PREGNANT WOMEN. J Clin Endocrinol Metab 1963; 23: 1298-1301
  • 7 Rabe T, Kalbfleisch H, Haun A et al. Influence of human lipoproteins on the progesterone synthesis of human term placenta in organ culture. Biol Res Pregnancy Perinatol 1983; 4: 75-83
  • 8 Sattar N, Greer IA, Louden J et al. Lipoprotein subfraction changes in normal pregnancy: threshold effect of plasma triglyceride on appearance of small, dense low density lipoprotein. J Clin Endocrinol Metab 1997; 82: 2483-2491
  • 9 Pecks U, Tillmann D, Ernst S et al. Anti-oxidized low-density lipoprotein (oxLDL) antibody levels are not related to increasing circulating oxLDL concentrations during the course of pregnancy. Am J Reprod Immunol 2012; 68: 345-352
  • 10 Seiler E, Woitke AK, Schollberg K et al. [Correlation of progesterone and apoprotein B in pregnancy]. Zentralbl Gynakol 1988; 110: 1340-1344
  • 11 Wetzka B, Winkler K, Kinner M et al. Altered lipid metabolism in preeclampsia and HELLP syndrome: links to enhanced platelet reactivity and fetal growth. Semin Thromb Hemost 1999; 25: 455-462
  • 12 Winkler K, Wetzka B, Hoffmann MM et al. Triglyceride-rich lipoproteins are associated with hypertension in preeclampsia. J Clin Endocrinol Metab 2003; 88: 1162-1166
  • 13 Pecks U, Caspers R, Schiessl B et al. The evaluation of the oxidative state of low-density lipoproteins in intrauterine growth restriction and preeclampsia. Hypertens Pregnancy 2012; 31: 156-165
  • 14 Dann AT, Kenyon AP, Wierzbicki AS et al. Plasma lipid profiles of women with intrahepatic cholestasis of pregnancy. Obstet Gynecol 2006; 107: 106-114
  • 15 Hertig A, Liere P, Chabbert-Buffet N et al. Steroid profiling in preeclamptic women: evidence for aromatase deficiency. Am J Obstet Gynecol 2010; 203: 477.e1-477.e9
  • 16 Abu-Hayyeh S, Papacleovoulou G, Lövgren-Sandblom A et al. Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype. Hepatology 2013; 57: 716-726
  • 17 Rath W, Faridi A, Dudenhausen JW. HELLP syndrome. J Perinat Med 2000; 28: 249-260
  • 18 Reimer T, Rohrmann H, Stubert J et al. Angiogenic factors and acute-phase proteins in serum samples of preeclampsia and HELLP patients: a matched-pair analysis. J Matern Fetal Neonatal Med 2013; 26: 263-269
  • 19 Mays JK. The active management of intrahepatic cholestasis of pregnancy. Curr Opin Obstet Gynecol 2010; 22: 100-103
  • 20 Parker jr. CR, Atkinson MW, Owen J et al. Dynamics of the fetal adrenal, cholesterol, and apolipoprotein B responses to antenatal betamethasone therapy. Am J Obstet Gynecol 1996; 174: 562-565
  • 21 Vögeli I, Jung HH, Dick B et al. Evidence for a role of sterol 27-hydroxylase in glucocorticoid metabolism in vivo. J Endocrinol 2013; 219: 119-129
  • 22 Winkler K, Wetzka B, Hoffmann MM et al. Low density lipoprotein (LDL) subfractions during pregnancy: accumulation of buoyant LDL with advancing gestation. J Clin Endocrinol Metab 2000; 85: 4543-4550
  • 23 Peter M, Dörr HG, Sippell WG. Changes in the concentrations of dehydroepiandrosterone sulfate and estriol in maternal plasma during pregnancy: a longitudinal study in healthy women throughout gestation and at term. Horm Res 1994; 42: 278-281
  • 24 Dörr HG, Heller A, Versmold HT et al. Longitudinal study of progestins, mineralocorticoids, and glucocorticoids throughout human pregnancy. J Clin Endocrinol Metab 1989; 68: 863-868
  • 25 Bartels I, Hoppe-Sievert B, Bockel B et al. Adjustment formulae for maternal serum alpha-fetoprotein, human chorionic gonadotropin, and unconjugated oestriol to maternal weight and smoking. Prenat Diagn 1993; 13: 123-130
  • 26 Kitawaki J, Inoue S, Tamura T et al. Cigarette smoking during pregnancy lowers aromatase cytochrome P-450 in the human placenta. J Steroid Biochem Mol Biol 1993; 45: 485-491
  • 27 Schreuder YJ, Hutten BA, van Eijsden M et al. Ethnic differences in maternal total cholesterol and triglyceride levels during pregnancy: the contribution of demographics, behavioural factors and clinical characteristics. Eur J Clin Nutr 2011; 65: 580-589
  • 28 Sattar N, Greer IA, Galloway PJ et al. Lipid and lipoprotein concentrations in pregnancies complicated by intrauterine growth restriction. J Clin Endocrinol Metab 1999; 84: 128-130
  • 29 Gilbert Evans SE, Ross LE, Sellers EM et al. 3alpha-reduced neuroactive steroids and their precursors during pregnancy and the postpartum period. Gynecol Endocrinol 2005; 21: 268-279
  • 30 Yawno T, Hirst JJ, Castillo-Melendez M et al. Role of neurosteroids in regulating cell death and proliferation in the late gestation fetal brain. Neuroscience 2009; 163: 838-847
  • 31 Kelleher MA, Palliser HK, Walker DW et al. Sex-dependent effect of a low neurosteroid environment and intrauterine growth restriction on fetal guinea pig brain development. J Endocrinol 2010; 208: 301-309
  • 32 Shanker YG, Shetty UP, Rao AJ. Regulation of low density lipoprotein receptor mRNA levels by estradiol 17beta and chorionic gonadotropin in human placenta. Mol Cell Biochem 1998; 187: 133-139
  • 33 Stepan H, Faber R, Walther T. Expression of low density lipoprotein receptor messenger ribonucleic acid in placentas from pregnancies with intrauterine growth retardation. Br J Obstet Gynaecol 1999; 106: 1221-1222
  • 34 Zhu XD, Bonet B, Knopp RH. 17beta-Estradiol, progesterone, and testosterone inversely modulate low-density lipoprotein oxidation and cytotoxicity in cultured placental trophoblast and macrophages. Am J Obstet Gynecol 1997; 177: 196-209
  • 35 Pecks U, Rath W, Caspers R et al. Oxidatively modified LDL particles in the human placenta in early and late onset intrauterine growth restriction. Placenta 2013; 34: 1142-1149
  • 36 Kosicka K, Siemiątkowska A, Krzyścin M et al. Glucocorticoid metabolism in hypertensive disorders of pregnancy: analysis of plasma and urinary cortisol and cortisone. PLoS One 2015; 10: e0144343
  • 37 Causevic M, Mohaupt M. 11β-Hydroxysteroid dehydrogenase type 2 in pregnancy and preeclampsia. Mol Aspects Med 2007; 28: 220-226
  • 38 Gallos ID, Sivakumar K, Kilby MD et al. Pre-eclampsia is associated with, and preceded by, hypertriglyceridaemia: a meta-analysis. BJOG 2013; 120: 1321-1332
  • 39 Hentschke MR, Poli-de-Figueiredo CE, da Costa BEP et al. Is the atherosclerotic phenotype of preeclamptic placentas due to altered lipoprotein concentrations and placental lipoprotein receptors? Role of a small-for-gestational-age phenotype. J Lipid Res 2013; 54: 2658-2664
  • 40 Davis RA, Kern F, Showalter R et al. Alterations of hepatic Na+,K+-atpase and bile flow by estrogen: effects on liver surface membrane lipid structure and function. Proc Natl Acad Sci U S A 1978; 75: 4130-4134
  • 41 Benifla JL, Dumont M, Levardon M et al. [Effects of micronized natural progesterone on the liver during the third trimester of pregnancy]. Contracept Fertil Sex 1997; 25: 165-169
  • 42 Meng L, Reyes H, Axelson M et al. Progesterone metabolites and bile acids in serum of patients with intrahepatic cholestasis of pregnancy: Effect of ursodeoxycholic acid therapy. Hepatology 1997; 26: 1573-1579