Gefäßmedizin Scan - Zeitschrift für Angiologie, Gefäßchirurgie, diagnostische und interventionelle Radiologie 2016; 03(02): 147-158
DOI: 10.1055/s-0042-106195
Fortbildung
Periphere Arterien
© Georg Thieme Verlag KG Stuttgart · New York

Zelltransplantation bei chronischer Extremitätenischämie

Berthold Amann
,
Holger Lawall
,
Claas Lüdemann
Further Information

Publication History

Publication Date:
01 July 2016 (online)

Fazit

Die autologe Stammzelltherapie ist nach den bislang vorliegenden Studien ein möglicher neuer Ansatz in der Behandlung der pAVK. Erste Erfahrungen zeigen eine gute Praktikabilität und sehr gute Sicherheit der Therapie. Die vorliegenden Ergebnisse der überwiegend unkontrollierten Studien zeugen von einer Verbesserung der Durchblutung, einhergehend mit klinischer Verbesserung. Eine erfolgreiche Umsetzung in die Praxis hängt von den Ergebnissen größerer kontrollierter Untersuchungen ab, die zurzeit laufen.

Mit der Stimulation der Gefäßneubildung durch autologe Stammzellentransplantation ergeben sich in der Zukunft eventuell neue oder ergänzende Alternativen zu den bisherigen Konzepten der Behandlung der pAVK. Dies gilt vor allem für Patienten, bei denen eine progrediente Verschlechterung der Ischämie mit pharmakologischen Maßnahmen nicht verhindert werden kann und bei denen eine gefäßchirurgische oder interventionelle Revaskularisation nicht möglich ist. Die Erfahrungen der Autoren sind ermutigend; bei sorgfältiger Selektion der Patienten (erhaltungswürdige Extremität, noch messbare Restdurchblutung mit einem Knöchel-Arm-Index von mehr als 0,1 und einem transkutanen Sauerstoffpartialdruck von über 0 mmHg) ist die technisch dank der Automatisierung und der bettseitigen Durchführbarkeit einfach gewordene autologe Zelltherapie eine gute Möglichkeit, um Majoramputationen zu verhindern.

 
  • Literatur

  • 1 Malyar N, Fürstenberg T, Wellmann J et al. Recent trends in morbidity and in-hospital outcomes of in-patients with peripheral arterial disease: a nationwide population-based analysis. Eur Heart J 2013; 34: 2706-2714
  • 2 Norgren L, Hiatt WR, Dormandy JA. TASC II Working Group et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg 2007; 33 (Suppl. 01) 1-S75
  • 3 Adam DJ, Beard JD, Cleveland T et al. BASIL Trial participants. Bypass versus angioplasty in severe ischemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 2005; 366: 1925-1934
  • 4 ClinicalTrials.gov. Alprostadil in Peripheral Arterial Occlusive Disease (PAOD) Stage IV (ESPECIAL). 2015 Im Internet: https://clinicaltrials.gov/ct2/show/results/NCT00596752 [Stand: 3.4.2016]
  • 5 Lepäntalo M. The path from art to evidence in treating critical limb ischemia – reflections on 35 years’ experience. Scan J Surg 2012; 101: 78-85
  • 6 Hammer A, Steiner S. Gene therapy for therapeutic angiogenesis in peripheral arterial disease – a systematic review and meta-analysis of randomized, controlled trials. Vasa 2013; 42: 331-339
  • 7 Miao YL, Wu W, Li BW et al. Clinical effectiveness of gene therapy on critical limb ischemia: a meta-analysis of 5 randomized controlled clinical trials. Vasc Endovascular Surg 2014; 48: 372-377
  • 8 Asahara T, Murahara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967
  • 9 Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularisation. J Clin Invest 1999; 103: 1231-1236
  • 10 Higashi Y, Kimura M, Hara K et al. Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilatation in patients with limb ischemia. Circulation 2004; 109: 1215-1218
  • 11 Shintani S, Murohara T, Ikeda H et al. Augmentation of postnatal neovascularisation with autologous bone marrow transplantation. Circulation 2001; 103: 897-903
  • 12 Ziegelhoeffer T, Fernandez B, Kostin S et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 2004; 94: 230-238
  • 13 Ding H, Triggle CR. Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Arch 2010; 459: 977-994
  • 14 Hamed S, Brenner B, Abassi Z. Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res 2010; 126: 166-174
  • 15 Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab 2009; 20: 295-302
  • 16 Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 2000; 101: 1500-1502
  • 17 Tateishi-Yuyama E, Matsubara H, Murohara T et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-435
  • 18 Esato K, Hamano K, Li TS et al. Neovascularization induced by autologous bone marrow cell implantation in peripheral arterial disease. Cell Transplant 2002; 11: 747-752
  • 19 Saigawa T, Kato K, Ozawa T et al. Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ J 2004; 68: 1189-1193
  • 20 Nizankowski R, Petriczek T, Skotnicki A et al. The treatment of advanced chronic lower limb ischaemia with marrow stem cell autotransplantation. Kardiol Pol 2005; 63: 351-360 ; discussion 361
  • 21 Durdu S, Akar AR, Arat M et al. Autologous bone-marrow mononuclear cell implantation for patients with Rutherford grade II–III thromboangiitis obliterans. J Vasc Surg 2006; 44: 732-739
  • 22 Kajiguchi M, Kondo T, Izawa H et al. Safety and efficacy of autologous progenitor cell transplantation for therapeutic angiogenesis in patients with critical limb ischemia. Circ J 2007; 71: 196-201
  • 23 Huang PP, Yang XF, Li SZ et al. Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost 2007; 98: 1335-1342
  • 24 Bartsch T, Brehm M, Zeus T et al. Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (the TAM-PAD study). Clin Res Cardiol 2007; 96: 891-899
  • 25 Hernández P, Cortina L, Artaza H et al. Autologous bone-marrow mononuclear cell implantation in patients with severe lower limb ischaemia: a comparison of using blood cell separator and Ficoll density gradient centrifugation. Atherosclerosis 2007; 194: e52-e56
  • 26 Van Tongeren RB, Hamming JF, Fibbe WE et al. Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg (Torino) 2008; 49: 51-58
  • 27 De Vriese AS, Billiet J, Van Droogenbroeck J et al. Autologous transplantation of bone marrow mononuclear cells for limb ischemia in a caucasian population with atherosclerosis obliterans. J Intern Med 2008; 263: 395-403
  • 28 Gu YQ, Zhang J, Guo LR et al. Transplantation of autologous bone marrow mononuclear cells for patients with lower limb ischemia. Chin Med J (Engl) 2008; 121: 963-967
  • 29 Napoli C, Farzati B, Sica V et al. Beneficial effects of autologous bone marrow cell infusion and antioxidants/L-arginine in patients with chronic critical limb ischemia. Eur J Cardiovasc Prev Rehabil 2008; 15: 709-718
  • 30 Amann B, Luedemann C, Ratei R et al. Autologous bone marrow transplantaion increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transpl 2009; 18: 371-380
  • 31 Procházka V, Gumulec J, Jalůvka F et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplantation 2010; 19: 1413-1424
  • 32 Walter DH, Krankenberg H, Balzer JO et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv 2011; 4: 26-37
  • 33 Ozturk A, Kucukardali Y, Tangi F et al. Therapeutical potential of autologous peripheral blood mononuclear cell transplantation in patients with type 2 diabetic critical limb ischemia. J Diabetes Complications 2012; 26: 29-33
  • 34 Benoit E, O’Donnell TF, Patel AN. Safety and efficacy of autologous cell therapy in critical lim ischemia: a systematic review. Cell Transplantation 2013; 22: 545-562
  • 35 Liu FP, Dong JJ, Sun SJ et al. Autologous bone marrow stem cell transplantation in critical limb ischemia: a meta-analysis of randomized controlled trials. Chin Med J (Engl) 2012; 125: 4296-4300
  • 36 Teraa M, Sprengers RW, van der Graaf Y. Autologous bone marrow-derived cell therapy in patients with critical limb ischemia: a meta-analysis of randomized controlled clinical trials. Ann Surg 2013; 258: 922-929
  • 37 Lee KB, Kang ES, Kim AK et al. Stem cell therapy in patients with thromboangiitis obliterans: assessment of the long-term clinical outcome and analysis of the prognostic factors. Int J Stem Cells 2011; 4: 88-98
  • 38 Matoba S, Tatsumi T, Murohara T et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J 2008; 156: 1010-1018
  • 39 Iafrati MD, Hallett JW, Geils G et al. Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical lim ischemia. J Vasc Surg 2011; 54: 1650-1658
  • 40 Benoit E, O’Donnell Jr TF, Iafrati MD et al. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J Transl Med 2011; 9: 165
  • 41 Lu D, Chen B, Liang Z et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011; 92: 26-36
  • 42 Powell RJ, Comerota AJ, Berceli SA et al. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg 2011; 54: 1032-1041
  • 43 Arai M, Misao Y, Nagai H et al. Granulocyte colony-stimulating factor: a noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease. Circ J 2006; 70: 1093-1098
  • 44 Huang P, Li S, Han M et al. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 2005; 28: 2155-2160
  • 45 Lawall H, Bramlage P, Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg 2011; 53: 445-453