Neuroradiologie Scan 2016; 06(02): 157-174
DOI: 10.1055/s-0042-105532
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Reformatierte kontrastverstärkte MRT-Aufnahmen zur präoperativen Beurteilung der Brückenvenen an der Schädelbasis[1]

Contrast-enhanced reformatted MR images for preoperative assessment of the bridging veins of the skull base
Pattana Wangaryattawanich
,
Lakshmi S. Chavali
,
Komal B. Shah
,
Bhanu Gogia
,
Raul F. Valenzuela
,
Franco DeMonte
,
Ashok J. Kumar
,
Anne L. Hayman
Further Information

Publication History

Publication Date:
21 April 2016 (online)

Zusammenfassung

MR- und CT-Phlebografie sind geeignete Verfahren zur Darstellung der Venen, die an der konvexen Seite des Gehirns verlaufen und das Blut aus den oberflächlichen Bereichen der medialen und lateralen Regionen der Hirnhemisphären ableiten. Für die Brückenvenen der Schädelbasis trifft dies jedoch nicht zu. Technische Faktoren verhindern, dass der gekrümmte Verlauf dieser klinisch wichtigen venösen Strukturen in kontrastmittelverstärkten MR- oder CT-Bildern, die in den axialen, koronaren und sagittalen Standardebenen aufgenommen wurden, vollständig zu sehen ist. Diese Einschränkung lässt sich durch die Anwendung eines Rekonstruktionsverfahrens überwinden, das die Abbildung der genannten venösen Strukturen und ihrer Vernetzungen ermöglicht. Die multiplanare Rekonstruktion und die Rekonstruktion in gekrümmten Ebenen mit Herausarbeitung der wichtigen Merkmale der Venen erfordern oft eine komplizierte Manipulation der ursprünglichen Bilder durch einen Spezialisten, der die notwendigen Kenntnisse besitzt und mit den zahlreichen Varianten des Venennetzes und den daraus resultierenden chirurgischen Implikationen vertraut ist. Die Autoren beschreiben die normale Anatomie der venösen Netze – eine Anatomie, die der Radiologe sicher beherrschen muss, damit er dem Chirurgen die wichtigen anatomischen Verhältnisse demonstrieren kann, die auf den Standardaufnahmen häufig nicht erkennbar sind. Diese Informationen erlauben eine bessere Kommunikation zwischen Radiologen und Chirurgen. Aus praktischen Gründen unterteilen die Autoren die Venen der Schädelbasis willkürlich in solche, die beim pterionalen Zugang, und solche, die beim subtemporalen Zugang besonders gefährdet sind. In Erweiterung dieses Vorgehens können auch die Verbindungen zwischen dem oberflächlichen Venensystem und den klappenlosen anderen venösen Netzen aufgezeigt werden, die das Blut aus den tiefen Anteilen der Hirnhemisphären, der Kopfhaut, dem Gesicht, der Halsmuskulatur, der Diploë der Schädelkalotte und den Hirnhäuten ableiten. Mit zunehmender Erfahrung sollten die Bildinterpretationen der Radiologen weiter ausreifen und über die einfache Analyse der primären hämodynamischen Veränderungen hinausgehen, die als Folge einer intraoperativen Opferung oder Verletzung von Venen auftreten können.

Abstract

Magnetic resonance (MR) venography and computed tomographic (CT) venography are suited for displaying the convexity veins that drain the medial and lateral surfaces of the brain hemispheres. However, such is not the case for the bridging veins of the skull base. Technical factors prevent contrast material-enhanced MR or CT images obtained in standard axial, coronal, and sagittal planes from fully displaying the curved pathways of these clinically important venous structures. This limitation can be overcome by using a reconstruction technique that depicts these venous structures and their interconnections. Curved and multiplanar reformatted images that distill the important venous features often require knowledgeable manipulation of source images by an operator who is familiar with numerous venous variants and their surgical implications. The normal anatomy of the draining veins is detailed anatomy that radiologists must master before they can show the surgeon the important venous anatomy that is often missing at standard imaging; this information will foster better communication between radiologists and their surgical colleagues. As a practical matter, the skull base veins are arbitrarily subdivided into those that are at greatest risk with the pterional approach and the subtemporal approach, respectively. These approaches can be expanded to define connections between the superficial venous system and the other valveless venous networks that drain the deep portions of the cerebral hemisphere, the scalp, face, muscles of the neck, diploë of the skull, and meninges. As radiologists gain experience, their image interpretations should mature beyond simple analysis of the primary hemodynamic changes induced by intraoperative sacrifice or injury.

1 © 2016 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2016; 36: 244 – 257. Online published in 10.1148 /rg.2016150084. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Oka K, Rhoton Jr AL, Barry M et al. Microsurgical anatomy of the superficial veins of the cerebrum. Neurosurgery 1985; 17: 711-748
  • 2 Ono M, Rhoton Jr AL, Peace D et al. Microsurgical anatomy of the deep venous system of the brain. Neurosurgery 1984; 15: 621-657
  • 3 Curé JK, Van Tassel P, Smith MT. Normal and variant anatomy of the dural venous sinuses. Semin Ultrasound CT MR 1994; 15: 499-519
  • 4 Baltsavias G, Parthasarathi V, Aydin E et al. Cranial dural arteriovenous shunts. I. Anatomy and embryology of the bridging and emissary veins. Neurosurg Rev 2015; 38: 253-263 ; discussion 263–264
  • 5 Mortazavi MM, Denning M, Yalcin B et al. The intracranial bridging veins: a comprehensive review of their history, anatomy, histology, pathology, and neurosurgical implications. Childs Nerv Syst 2013; 29: 1073-1078
  • 6 Nakase H, Shin Y, Nakagawa I et al. Clinical features of postoperative cerebral venous infarction. Acta Neurochir (Wien) 2005; 147: 621-626 ; discussion 626
  • 7 Roberson Jr JB, Brackmann DE, Fayad JN. Complications of venous insufficiency after neurotologic-skull base surgery. Am J Otol 2000; 21: 701-705
  • 8 Inamasu J, Shiobara R, Kawase T et al. Haemorrhagic venous infarction following the posterior petrosal approach for acoustic neurinoma surgery: a report of two cases. Eur Arch Otorhinolaryngol 2002; 259: 162-165
  • 9 Leonetti JP, Reichman OH, Silberman SJ et al. Venous infarction following translabyrinthine access to the cerebellopontine angle. Am J Otol 1994; 15: 723-727
  • 10 Suzuki Y, Endo T, Ikeda H et al. Venous infarction resulting from sacrifice of a bridging vein during clipping of a cerebral aneurysm: preoperative evaluation using three-dimensional computed tomography angiography – case report. Neurol Med Chir (Tokyo) 2003; 43: 550-554
  • 11 Kageyama Y, Fukuda K, Kobayashi S et al. Cerebral vein disorders and postoperative brain damage associated with the pterional approach in aneurysm surgery. Neurol Med Chir (Tokyo) 1992; 32: 733-738
  • 12 Dean BL, Wallace RC, Zabramski JM et al. Incidence of superficial sylvian vein compromise and postoperative effects on CT imaging after surgical clipping of middle cerebral artery aneurysms. AJNR Am J Neuroradiol 2005; 26: 2019-2026
  • 13 Abe H, Tsuru M, Ito T et al. Temporal lobe damage as pitfalls at subtemporal transtentorial approach (author’s transl) [in Japanese]. No Shinkei Geka 1981; 9: 819-827
  • 14 Nagata K, Nakase H, Kakizaki T et al. The effect of brain compression under venous circulatory impairment. Neurol Res 2000; 22: 713-720
  • 15 Nakase H, Nagata K, Otsuka H et al. Local cerebral blood flow autoregulation following “asymptomatic” cerebral venous occlusion in the rat. J Neurosurg 1998; 89: 118-124
  • 16 Otsuka H, Nakase H, Nagata K et al. Effect of age on cerebral venous circulation disturbances in the rat. J Neurosurg 2000; 93: 298-304
  • 17 Leach JL, Fortuna RB, Jones BV et al. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. RadioGraphics 2006; 26: S19-S41 ; discussion S42–S43
  • 18 Connor SE, Jarosz JM. Magnetic resonance imaging of cerebral venous sinus thrombosis. Clin Radiol 2002; 57: 449-461
  • 19 Klingebiel R, Bauknecht HC, Bohner G et al. Comparative evaluation of 2D time-of-flight and 3D elliptic centric contrast-enhanced MR venography in patients with presumptive cerebral venous and sinus thrombosis. Eur J Neurol 2007; 14: 139-143
  • 20 Rollins N, Ison C, Reyes T et al. Cerebral MR venography in children: comparison of 2D time-of-flight and gadolinium-enhanced 3D gradient-echo techniques. Radiology 2005; 235: 1011-1017
  • 21 Liang L, Korogi Y, Sugahara T et al. Evaluation of the intracranial dural sinuses with a 3D contrast-enhanced MP-RAGE sequence: prospective comparison with 2D-TOF MR venography and digital subtraction angiography. AJNR Am J Neuroradiol 2001; 22: 481-492
  • 22 Saindane AM, Mitchell BC, Kang J et al. Performance of spin-echo and gradient-echo T1-weighted sequences for evaluation of dural venous sinus thrombosis and stenosis. AJR Am J Roentgenol 2013; 201: 162-169
  • 23 Liang L, Korogi Y, Sugahara T et al. Normal structures in the intracranial dural sinuses: delineation with 3D contrast-enhanced magnetization prepared rapid acquisition gradient-echo imaging sequence. AJNR Am J Neuroradiol 2002; 23: 1739-1746
  • 24 Mullick R, Bryan RN, Butman J. Confocal volume rendering: fast, segmentation-free visualization of internal structures. In: Mun SK, , ed. Proceedings of SPIE: medical imaging 2000 – image display and visualization. Vol 3976. Bellingham, Wash: International Society for Optics and Photonics; 2000
  • 25 Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 2004; 17: 205-216
  • 26 Hayman LA, Kumar VA, Hamilton J et al. Deformable anatomic templates embed knowledge into patient’s brain images. I. Construction and display. J Comput Assist Tomogr 2012; 36: 354-359
  • 27 Altay T, Couldwell WT. The frontotemporal (pterional) approach: an historical perspective. Neurosurgery 2012; 71: 481-491 ; discussion 491-492
  • 28 Chaddad-Neto F, Campos Filho JM, Dória-Netto HL et al. The pterional craniotomy: tips and tricks. Arq Neuropsiquiatr 2012; 70: 727-732
  • 29 Cass SP, Hirsch BE, Stechison MT. Evolution and advances of the lateral surgical approaches to cranial base neoplasms. J Neurooncol 1994; 20: 337-361
  • 30 Campero A, Ajler P, Goldschmidt E et al. Three-step anterolateral approaches to the skull base. J Clin Neurosci 2014; 21: 1803-1807
  • 31 Ammerman JM, Lonser RR, Oldfield EH. Posterior subtemporal transtentorial approach to intraparenchymal lesions of the anteromedial region of the superior cerebellum. J Neurosurg 2005; 103: 783-788
  • 32 Suzuki Y, Matsumoto K. Variations of the superficial middle cerebral vein: classification using three-dimensional CT angiography. AJNR Am J Neuroradiol 2000; 21: 932-938
  • 33 Chung JI, Weon YC. Anatomic variations of the superficial middle cerebral vein: embryologic aspects of the regressed embryonic tentorial sinus. Interv Neuroradiol 2005; 11: 115-122
  • 34 Kazumata K, Kamiyama H, Ishikawa T et al. Operative anatomy and classification of the sylvian veins for the distal transsylvian approach. Neurol Med Chir (Tokyo) 2003; 43: 427-433 ; discussion 434
  • 35 Ikushima I, Korogi Y, Kitajima M et al. Evaluation of drainage patterns of the major anastomotic veins on the lateral surface of the cerebrum using three-dimensional contrast-enhanced MP-RAGE sequence. Eur J Radiol 2006; 58: 96-101
  • 36 Savardekar AR, Goto T, Nagata T et al. Staged “intentional” bridging vein ligation: a safe strategy in gaining wide access to skull base tumors. Acta Neurochir (Wien) 2014; 156: 671-679
  • 37 Tubbs RS, Salter EG, Wellons 3rd JC et al. The sphenoparietal sinus. Neurosurgery 2007; 60: ONS9-ONS12 ; discussion ONS12
  • 38 San Millán Ruíz D, Fasel JH, Rüfenacht DA et al. The sphenoparietal sinus of Breschet: Does it exist? An anatomic study. AJNR Am J Neuroradiol 2004; 25: 112-120
  • 39 Takahashi S, Sakuma I, Otani T et al. Venous anatomy of the sphenoparietal sinus: evaluation by MR imaging. Interv Neuroradiol 2007; 13: 84-89
  • 40 Hasegawa H, Inoue T, Sato K et al. Mobilization of the sphenoparietal sinus: a simple technique to preserve prominent frontobasal bridging veins during surgical clipping of anterior communicating artery aneurysms – technical case report. Neurosurgery 2013; 73: onsE124-onsE127 ; discussion onsE128-onsE129
  • 41 Avci E, Dagtekin A, Akture E et al. Microsurgical anatomy of the vein of Labbé. Surg Radiol Anat 2011; 33: 569-573
  • 42 Koperna T, Tschabitscher M, Knosp E. The termination of the vein of “Labbé” and its microsurgical significance. Acta Neurochir (Wien) 1992; 118: 172-175
  • 43 Lustig LR, Jackler RK. The vulnerability of the vein of Labbé during combined craniotomies of the middle and posterior fossae. Skull Base Surg 1998; 8: 1-9
  • 44 Bigelow DC, Hoffer ME, Schlakman B et al. Angiographic assessment of the transverse sinus and vein of Labbé to avoid complications in skull base surgery. Skull Base Surg 1993; 3: 217-222
  • 45 Matsushima T, Suzuki SO, Fukui M et al. Microsurgical anatomy of the tentorial sinuses. J Neurosurg 1989; 71: 923-928
  • 46 Ueyama T, Al-Mefty O, Tamaki N. Bridging veins on the tentorial surface of the cerebellum: a microsurgical anatomic study and operative considerations. Neurosurgery 1998; 43: 1137-1145
  • 47 Miabi Z, Midia R, Rohrer SE et al. Delineation of lateral tentorial sinus with contrast-enhanced MR imaging and its surgical implications. AJNR Am J Neuroradiol 2004; 25: 1181-1188
  • 48 Matsushima K, Matsushima T, Kuga Y et al. Classification of the superior petrosal veins and sinus based on drainage pattern. Neurosurgery 2014; 10 (Suppl. 02) 357-367 ; discussion 367
  • 49 Tanriover N, Abe H, Rhoton Jr AL et al. Microsurgical anatomy of the superior petrosal venous complex: new classifications and implications for subtemporal transtentorial and retrosigmoid suprameatal approaches. J Neurosurg 2007; 106: 1041-1050
  • 50 Matsushima T, Kawashima M, Inoue K et al. Anatomy of the superior petrosal veins and their exposure and management during petrous apex meningioma surgery using the lateral suboccipital retrosigmoid approach. Neurosurg Rev 2014; 37: 535-546
  • 51 Watanabe T, Igarashi T, Fukushima T et al. Anatomical variation of superior petrosal vein and its management during surgery for cerebellopontine angle meningiomas. Acta Neurochir (Wien) 2013; 155: 1871-1878
  • 52 Kaku S, Miyahara K, Fujitsu K et al. Drainage pathway of the superior petrosal vein evaluated by CT venography in petroclival meningioma survey. J Neurol Surg B Skull Base 2012; 73: 316-320
  • 53 Matsushima K, Ribas ES, Kiyosue H et al. Absence of the superior petrosal veins and sinus: surgical considerations. Surg Neurol Int 2015; 6: 34
  • 54 Masuoka J, Matsushima T, Hikita T et al. Cerebellar swelling after sacrifice of the superior petrosal vein during microvascular decompression for trigeminal neuralgia. J Clin Neurosci 2009; 16: 1342-1344
  • 55 Shimada R, Kiyosue H, Tanoue S et al. Superior petrosal sinus: hemodynamic features in normal and cavernous sinus dural arteriovenous fistulas. AJNR Am J Neuroradiol 2013; 34: 609-615