Subscribe to RSS
DOI: 10.1055/s-0042-102540
Fast Abdominal Magnetic Resonance Imaging
Schnelle Abdomenbildgebung in der MagnetresonanztomografiePublication History
31 October 2015
18 January 2016
Publication Date:
16 March 2016 (online)
Abstract
Abdominal imaging is the driving force that necessitates the development of numerous techniques for accelerated image acquisition in magnetic resonance imaging (MRI). Today, numerous techniques are available that enable rapid, high spatial resolution acquisition for both T1 and T2 weighted images. These techniques open new opportunities in the detection and classification of numerous pathologies in the abdomen. However, there is still ongoing progress in the development of fast and ultrafast sequences and promising techniques are currently close to clinical application. With these 4D-technologies, MRI is becoming the central imaging modality for dynamic, motion-compensated imaging of the parenchymal abdominal organs such as liver, pancreas and kidney.
Key points:
• Fast imaging techniques are especially valuable in the upper abdomen, as this region is particularly affected by respiratory motion.
• Parallel imaging and k-space-based acceleration techniques are the basic components of fast 3 D sequences.
• By further accelerating 3 D imaging with high spatial resolution, 4 D techniques become available.
Citation Format:
• Budjan J., Schoenberg S. O., Riffel P. Fast Abdominal Magnetic Resonance Imaging. Fortschr Röntgenstr 2016; 188: 551 – 558
Zusammenfassung
Die abdominelle Bildgebung ist die treibende Kraft für zahlreiche Techniken und Entwicklungen, die über unterschiedliche Ansätze eine Beschleunigung der Bildakquisition in der Magnetresonanztomografie (MRT) bewirken. Heute stehen für T1- und T2-Kontrast zahlreiche Techniken für die schnelle, räumlich hochaufgelöste Bildaufnahme zur Verfügung. Durch sie eröffnen sich für die MRT neue Möglichkeiten in der Detektion und Klassifikation verschiedenster Pathologien. Gleichzeitig ist die Entwicklung dieser Techniken nicht abgeschlossen und vielversprechende Techniken stehen auch aktuell wieder kurz vor der breiten klinischen Anwendung. Durch diese 4D-Technologien positioniert sich die MRT als das zentrale Verfahren für die dynamische, bewegungskompensierte Bildgebung parenchymatöser Organe wie Leber, Pankreas und Niere.
Key words
abdominal magnetic resonance imaging - fast imaging - 4 D imaging - MRI sequence techniques-
References
- 1 Li M, Winkler B, Pabst T et al. Fast MR Imaging of the Paediatric Abdomen with CAIPIRINHA-Accelerated T1w 3D FLASH and with High-Resolution T2w HASTE: A Study on Image Quality. Gastroenterol Res Pract 2015; 693654 DOI: 10.1155/2015/693654.
- 2 Kinner S, Hahnemann ML, Forsting M et al. Magnetic resonance imaging of the bowel: today and tomorrow. Fortschr Röntgenstr 2015; 187: 160-167 DOI: 10.1055/s-0034-1385453.
- 3 Yankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples. Curr Med Imaging Rev 2009; 3: 91-107 DOI: 10.2174/157340507780619179.
- 4 Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 2006; 24: 3293-3298 DOI: 10.1200/JCO.2006.06.8080.
- 5 Merkle EM, Dale BM. Abdominal MRI at 3.0 T: the basics revisited. Am J Roentgenol 2000; 186: 1524-1532 DOI: 10.2214/Am J Roentgenol.05.0932.
- 6 Willatt JM, Hussain HK, Adusumilli S et al. MR Imaging of hepatocellular carcinoma in the cirrhotic liver: challenges and controversies. Radiology 2008; 247: 311-330 DOI: 10.1148/radiol.2472061331.
- 7 Bitar R, Leung G, Perng R et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 2006; 26: 513-537 DOI: 10.1148/rg.262055063.
- 8 Denolin V, Azizieh C, Metens T. New insights into the mechanisms of signal formation in RF-spoiled gradient echo sequences. Magn Reson Med 2005; 54: 937-954 DOI: 10.1002/mrm.20652.
- 9 Mezrich R. A perspective on K-space. Radiology 1995; 195: 297-315 DOI: 10.1148/radiology.195.2.7724743.
- 10 Gallagher TA, Nemeth AJ, Hacein-Bey L. An introduction to the Fourier transform: relationship to MRI. Am J Roentgenol 2008; 190: 1396-1405 DOI: 10.2214/Am J Roentgenol.07.2874.
- 11 Rofsky NM, Lee VS, Laub G et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 1999; 212: 876-884 DOI: 10.1148/radiology.212.3.r99se34876.
- 12 Lee JM, Choi BI. Hepatocellular nodules in liver cirrhosis: MR evaluation. Abdom Imaging 2001; 36: 282-289 DOI: 10.1007/s00261-011-9692-2.
- 13 Mugler 3rd JP. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 2014; 39: 745-767 DOI: 10.1002/jmri.24542.
- 14 Regan F. Clinical applications of half-Fourier (HASTE) MR sequences in abdominal imaging. Magn Reson Imaging Clin N Am 1999; 7: 275-288
- 15 Hadizadeh DR, Marx C, Gieseke J et al. High temporal and high spatial resolution MR angiography (4D-MRA). Fortschr Röntgenstr 2014; 186: 847-859 DOI: 10.1055/s-0034-1366661.
- 16 van Vaals JJ, Brummer ME, Dixon WT et al. "Keyhole" method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 1993; 3: 671-675
- 17 Pruessmann KP, Weiger M, Scheidegger MB et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962
- 18 Griswold MA, Jakob PM, Heidemann RM et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202-1210 DOI: 10.1002/mrm.10171.
- 19 Breuer FA, Blaimer M, Heidemann RM et al. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 2005; 53: 684-691 DOI: 10.1002/mrm.20401.
- 20 Weiger M, Pruessmann KP, Boesiger P. 2D SENSE for faster 3D MRI. MAGMA 2002; 14: 10-19
- 21 Breuer FA, Blaimer M, Mueller MF et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2000; 55: 549-556 DOI: 10.1002/mrm.20787.
- 22 Al Obaidy M, Ramalho M, Busireddy KK et al. High-resolution 3D-GRE imaging of the abdomen using controlled aliasing acceleration technique – a feasibility study. European radiology 2015; epub ahead of print, DOI: 10.1007/s00330-015-3780-6.
- 23 Morani AC, Vicens RA, Wei W et al. CAIPIRINHA-VIBE and GRAPPA-VIBE for liver MRI at 1.5 T: a comparative in vivo patient study. Journal of computer assisted tomography 2015; 39: 263-269 DOI: 10.1097/RCT.0000000000000200.
- 24 Wright KL, Harrell MW, Jesberger JA et al. Clinical evaluation of CAIPIRINHA: comparison against a GRAPPA standard. Journal of magnetic resonance imaging 2014; 39: 189-194 DOI: 10.1002/jmri.24105.
- 25 Riffel P, Attenberger UI, Kannengiesser S et al. Highly accelerated T1-weighted abdominal imaging using 2-dimensional controlled aliasing in parallel imaging results in higher acceleration: a comparison with generalized autocalibrating partially parallel acquisitions parallel imaging. Investigative radiology 2013; 48: 554-561 DOI: 10.1097/RLI.0b013e31828654ff.
- 26 Michaely HJ, Morelli JN, Budjan J et al. CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE): a new technique for fast time-resolved dynamic 3-dimensional imaging of the abdomen with high spatial resolution. Invest Radiol 2013; 48: 590-597 DOI: 10.1097/RLI.0b013e318289a70b.
- 27 Budjan J, Ong M, Riffel P et al. CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE) for dynamic liver imaging: comparison of gadoterate meglumine, gadobutrol and gadoxetic acid. Eur J Radiol 2014; 83: 2007-2012 DOI: 10.1016/j.ejrad.2014.08.003.
- 28 Kazmierczak PM, Theisen D, Thierfelder KM et al. Improved detection of hypervascular liver lesions with CAIPIRINHA-Dixon-TWIST-volume-interpolated breath-hold examination. Invest Radiol 2015; 50: 153-160 DOI: 10.1097/RLI.0000000000000118.
- 29 Lee VS, Lavelle MT, Rofsky NM et al. Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality. Radiology 2000; 215: 365-372
- 30 Krinsky GA, Lee VS, Theise ND et al. Hepatocellular carcinoma and dysplastic nodules in patients with cirrhosis: prospective diagnosis with MR imaging and explantation correlation. Radiology 2001; 219: 445-454
- 31 Bamrungchart S, Tantaway EM, Midia EC et al. Free breathing three-dimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: Comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). Journal of magnetic resonance imaging 2013; 38: 1572-1577 DOI: 10.1002/jmri.24064.
- 32 Azevedo RM, de Campos RO, Ramalho M et al. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. American journal of roentgenology 2011; 197: 650-657 DOI: 10.2214/Am J Roentgenol.10.5881.
- 33 Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic resonance in medicine 2007; 58: 1182-1195 DOI: 10.1002/mrm.21391.
- 34 Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magnetic resonance in medicine 2008; 59: 365-373 DOI: 10.1002/mrm.21477.
- 35 Jung H, Sung K, Nayak KS et al. k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magnetic resonance in medicine 2009; 61: 103-116 DOI: 10.1002/mrm.21757.
- 36 Chan RW, Ramsay EA, Cheung EY et al. The influence of radial undersampling schemes on compressed sensing reconstruction in breast MRI. Magnetic resonance in medicine 2012; 67: 363-377 DOI: 10.1002/mrm.23008.
- 37 Usman M, Atkinson D, Odille F et al. Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magnetic resonance in medicine 2013; 70: 504-516 DOI: 10.1002/mrm.24463.