Semin Liver Dis 2022; 42(01): 017-033
DOI: 10.1055/s-0041-1742277
Review Article

Role of YAP1 Signaling in Biliary Development, Repair, and Disease

Laura Molina
1   Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
,
Kari Nejak-Bowen
1   Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
2   Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
,
Satdarshan P. Monga
1   Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
2   Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
3   Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania
› Author Affiliations
Funding Funding was provided by 2T32EB001026-16A1 (S.P.M and L.M.); 1F30DK121393 to L.M., and 1R01DK62277, 1R01DK100287, 1R01DK116993, R01CA204586, 1R01CA251155 and Endowed Chair for Experimental Pathology to S.P.M., and by National Institutes of Health grant 1P30DK120531–01 to Pittsburgh Liver Research Center (S.P.M.).


Abstract

Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.



Publication History

Article published online:
24 January 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Zanconato F, Forcato M, Battilana G. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 2015; 17 (09) 1218-1227
  • 2 Galli GG, Carrara M, Yuan W-C. et al. YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol Cell 2015; 60 (02) 328-337
  • 3 Stein C, Bardet AF, Roma G. et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet 2015; 11 (08) e1005465
  • 4 Zhao B, Ye X, Yu J. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22 (14) 1962-1971
  • 5 Zhou D, Conrad C, Xia F. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009; 16 (05) 425-438
  • 6 Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 2010; 24 (09) 862-874
  • 7 Moleirinho S, Hoxha S, Mandati V. et al. Regulation of localization and function of the transcriptional co-activator YAP by angiomotin. eLife 2017; 3 (06) e23966
  • 8 Robinson BS, Moberg KH. Cell-cell junctions: α-catenin and E-cadherin help fence in Yap1. Curr Biol 2011; 21 (21) R890-R892
  • 9 Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 2010; 24 (01) 72-85
  • 10 Sugihara T, Werneburg NW, Hernandez MC. et al. YAP tyrosine phosphorylation and nuclear localization in cholangiocarcinoma cells are regulated by LCK and independent of LATS activity. Mol Cancer Res 2018; 16 (10) 1556-1567
  • 11 Patel SH, Camargo FD, Yimlamai D. Hippo Signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology 2017; 152 (03) 533-545
  • 12 Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 2017; 18 (12) 758-770
  • 13 Gumbiner BM, Kim N-G. The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci 2014; 127 (Pt 4): 709-717
  • 14 Heng BC, Zhang X, Aubel D. et al. An overview of signaling pathways regulating YAP/TAZ activity. Cell Mol Life Sci 2021; 78 (02) 497-512
  • 15 Moya IM, Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 2019; 20 (04) 211-226
  • 16 Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 2013; 154 (06) 1342-1355
  • 17 Zhang S, Wang J, Wang H. et al. Hippo cascade controls lineage commitment of liver tumors in mice and humans. Am J Pathol 2018; 188 (04) 995-1006
  • 18 Wang J, Dong M, Xu Z. et al. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice. Oncogene 2018; 37 (24) 3229-3242
  • 19 Kim W, Khan SK, Gvozdenovic-Jeremic J. et al. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 2017; 127 (01) 137-152
  • 20 Kim W, Khan SK, Yang Y. Interacting network of Hippo, Wnt/β-catenin and Notch signaling represses liver tumor formation. BMB Rep 2017; 50 (01) 1-2
  • 21 Kriz V, Korinek V. Wnt, RSPO and hippo signalling in the intestine and intestinal stem cells. Genes (Basel) 2018; 9 (01) 9
  • 22 Taniguchi K, Moroishi T, de Jong PR. et al. YAP-IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proc Natl Acad Sci U S A 2017; 114 (07) 1643-1648
  • 23 Chang L, Azzolin L, Di Biagio D. et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 2018; 563 (7730): 265-269
  • 24 Ibar C, Irvine KD. Integration of Hippo-YAP signaling with metabolism. Dev Cell 2020; 54 (02) 256-267
  • 25 Fitamant J, Kottakis F, Benhamouche S. et al. YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Rep 2015; 10 (10) 1692-1707 DOI: 10.1016/j.celrep.2015.02.027.
  • 26 Yuan WC, Pepe-Mooney B, Galli GG. et al. NUAK2 is a critical YAP target in liver cancer. Nat Commun 2018; 9 (01) 4834
  • 27 Pepe-Mooney BJ, Dill MT, Alemany A. et al. Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration. Cell Stem Cell 2019; 25 (01) 23-38.e8
  • 28 Mooring M, Fowl BH, Lum SZC. et al. Hepatocyte stress increases expression of Yes-associated protein and transcriptional coactivator with PDZ-binding motif in hepatocytes to promote parenchymal inflammation and fibrosis. Hepatology 2020; 71 (05) 1813-1830
  • 29 Nguyen Q, Anders RA, Alpini G, Bai H. Yes-associated protein in the liver: regulation of hepatic development, repair, cell fate determination and tumorigenesis. Dig Liver Dis 2015; 47 (10) 826-835
  • 30 Alder O, Cullum R, Lee S. et al. Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. Cell Rep 2014; 9 (01) 261-271
  • 31 Reggiani F, Gobbi G, Ciarrocchi A, Sancisi V. YAP and TAZ are not identical twins. Trends Biochem Sci 2021; 46 (02) 154-168
  • 32 Moroishi T, Park HW, Qin B. et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev 2015; 29 (12) 1271-1284
  • 33 Hau JC, Erdmann D, Mesrouze Y. et al. The TEAD4-YAP/TAZ protein-protein interaction: expected similarities and unexpected differences. ChemBioChem 2013; 14 (10) 1218-1225
  • 34 Morin-Kensicki EM, Boone BN, Howell M. et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol 2006; 26 (01) 77-87
  • 35 Makita R, Uchijima Y, Nishiyama K. et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol 2008; 294 (03) F542-F553
  • 36 Hossain Z, Ali SM, Ko HL. et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A 2007; 104 (05) 1631-1636
  • 37 Heng BC, Zhang X, Aubel D. et al. Role of YAP/TAZ in cell lineage fate determination and related signaling pathways. Front Cell Dev Biol 2020; 8: 735
  • 38 Driskill JH, Pan D. The hippo pathway in liver homeostasis and pathophysiology. Annu Rev Pathol 2021; 16: 299-322
  • 39 Wang X, Zheng Z, Caviglia JM. et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab 2016; 24 (06) 848-862
  • 40 Hagenbeek TJ, Webster JD, Kljavin NM. et al. The Hippo pathway effector TAZ induces TEAD-dependent liver inflammation and tumors. Sci Signal 2018; 11 (547) 11
  • 41 Wang H, Wang J, Zhang S. et al. Distinct and overlapping roles of Hippo Effectors YAP and TAZ during human and mouse hepatocarcinogenesis. Cell Mol Gastroenterol Hepatol 2021; 11 (04) 1095-1117
  • 42 Van Haele M, Moya IM, Karaman R. et al. YAP and TAZ heterogeneity in primary liver cancer: an analysis of its prognostic and diagnostic role. Int J Mol Sci 2019; 20 (03) 20
  • 43 Lee D-H, Park JO, Kim T-S. et al. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nat Commun 2016; 7: 11961
  • 44 Yimlamai D, Christodoulou C, Galli GG. et al. Hippo pathway activity influences liver cell fate. Cell 2014; 157 (06) 1324-1338
  • 45 Dong J, Feldmann G, Huang J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130 (06) 1120-1133
  • 46 Molina LM, Zhu J, Li Q. et al. Compensatory hepatic adaptation accompanies permanent absence of intrahepatic biliary network due to YAP1 loss in liver progenitors. Cell Rep 2021; 36 (01) 109310
  • 47 Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver development. Development 2015; 142 (12) 2094-2108
  • 48 Su X, Shi Y, Zou X. et al. Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development. BMC Genomics 2017; 18 (01) 946
  • 49 Yang L, Wang W-H, Qiu W-L, Guo Z, Bi E, Xu CR. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology 2017; 66 (05) 1387-1401
  • 50 Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci 2004; 117 (Pt 15): 3165-3174
  • 51 Ober EA, Lemaigre FP. Development of the liver: insights into organ and tissue morphogenesis. J Hepatol 2018; 68 (05) 1049-1062
  • 52 Clotman F, Jacquemin P, Plumb-Rudewiez N. et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev 2005; 19 (16) 1849-1854
  • 53 Takayama K, Kawabata K, Nagamoto Y. et al. CCAAT/enhancer binding protein-mediated regulation of TGFβ receptor 2 expression determines the hepatoblast fate decision. Development 2014; 141 (01) 91-100
  • 54 Gérard C, Tys J, Lemaigre FP. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin Cell Dev Biol 2017; 66: 43-50
  • 55 Lemaigre FP. Development of the intrahepatic and extrahepatic biliary tract: a framework for understanding congenital diseases. Annu Rev Pathol 2020; 15: 1-22
  • 56 Benhamouche-Trouillet S, O'Loughlin E, Liu C-H. et al. Proliferation-independent role of NF2 (merlin) in limiting biliary morphogenesis. Development 2018; 145 (09) 145
  • 57 Tanimizu N, Kaneko K, Itoh T. et al. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology 2016; 64 (01) 175-188
  • 58 Tanimizu N, Kikkawa Y, Mitaka T, Miyajima A. α1- and α5-containing laminins regulate the development of bile ducts via β1 integrin signals. J Biol Chem 2012; 287 (34) 28586-28597
  • 59 Carpentier R, Suñer RE, van Hul N. et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 2011; 141: 1432-1438
  • 60 Font-Burgada J, Shalapour S, Ramaswamy S. et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 2015; 162 (04) 766-779
  • 61 Walter TJ, Cast AE, Huppert KA, Huppert SS. Epithelial VEGF signaling is required in the mouse liver for proper sinusoid endothelial cell identity and hepatocyte zonation in vivo. Am J Physiol Gastrointest Liver Physiol 2014; 306 (10) G849-G862
  • 62 Fabris L, Cadamuro M, Libbrecht L. et al. Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development. Hepatology 2008; 47 (02) 719-728
  • 63 Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol 2017; 11: 622-630
  • 64 Russell JO, Monga SP. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annu Rev Pathol 2018; 13: 351-378
  • 65 Cardinale V, Wang Y, Carpino G. et al. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology 2011; 54 (06) 2159-2172
  • 66 de Jong IEM, van Leeuwen OB, Lisman T, Gouw ASH, Porte RJ. Repopulating the biliary tree from the peribiliary glands. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (4 Pt B): 1524-1531
  • 67 Villasenor A, Stainier DYR. On the development of the hepatopancreatic ductal system. Semin Cell Dev Biol 2017; 66: 69-80
  • 68 Spence JR, Lange AW, Lin SC. et al. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell 2009; 17 (01) 62-74
  • 69 Uemura M, Higashi M, Pattarapanawan M. et al. Gallbladder wall abnormality in biliary atresia of mouse Sox17 +/- neonates and human infants. Dis Model Mech 2020; 13 (04) 13
  • 70 Sumazaki R, Shiojiri N, Isoyama S. et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet 2004; 36 (01) 83-87
  • 71 Villasenor A, Gauvrit S, Collins MM, Maischein HM, Stainier DYR. Hhex regulates the specification and growth of the hepatopancreatic ductal system. Dev Biol 2020; 458 (02) 228-236
  • 72 Dong PD, Munson CA, Norton W. et al. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat Genet 2007; 39 (03) 397-402
  • 73 Thestrup MI, Caviglia S, Cayuso J. et al. A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation. Nat Commun 2019; 10 (01) 5220
  • 74 Brandt ZJ, Echert AE, Bostrom JR, North PN, Link BA. Core Hippo pathway components act as a brake on Yap and Taz in the development and maintenance of the biliary network. Development 2020; 147 (12) 147
  • 75 Wei W, Lotto J, Hoodless PA. Expression patterns of Yes-associated protein 1 in the developing mouse liver. Gene Expr Patterns 2018; 29: 10-17
  • 76 Airik M, Schüler M, McCourt B. et al. Loss of Anks6 leads to YAP deficiency and liver abnormalities. Hum Mol Genet 2020; 29 (18) 3064-3080
  • 77 Antoniou A, Raynaud P, Cordi S. et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009; 136 (07) 2325-2333
  • 78 Tschaharganeh DF, Chen X, Latzko P. et al. Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma. Gastroenterology 2013; 144: 1530-1542
  • 79 Wu N, Nguyen Q, Wan Y. et al. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals. Lab Invest 2017; 97 (07) 843-853
  • 80 Kim KH, Chen CC, Alpini G, Lau LF. CCN1 induces hepatic ductular reaction through integrin αvβ5-mediated activation of NF-κB. J Clin Invest 2015; 125 (05) 1886-1900
  • 81 Schaub JR, Huppert KA, Kurial SNT. et al. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 2018; 557 (7704): 247-251
  • 82 Noguchi S, Saito A, Nagase T. YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int J Mol Sci 2018; 19 (11) 19
  • 83 Oh S-H, Swiderska-Syn M, Jewell ML, Premont RT, Diehl AM. Liver regeneration requires Yap1-TGFβ-dependent epithelial-mesenchymal transition in hepatocytes. J Hepatol 2018; 69 (02) 359-367 DOI: 10.1016/j.jhep.2018.05.008.
  • 84 Grannas K, Arngården L, Lönn P. et al. Crosstalk between Hippo and TGFβ: subcellular localization of YAP/TAZ/Smad Complexes. J Mol Biol 2015; 427 (21) 3407-3415
  • 85 Zhang N, Bai H, David KK. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 2010; 19 (01) 27-38
  • 86 Verboven E, Moya IM, Sansores-Garcia L. et al. Regeneration defects in Yap and Taz mutant mouse livers are caused by bile duct disruption and cholestasis. Gastroenterology 2021; 160 (03) 847-862
  • 87 Lu L, Finegold MJ, Johnson RL. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp Mol Med 2018; 50 (01) e423
  • 88 Nishio M, Sugimachi K, Goto H. et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A 2016; 113 (01) E71-E80
  • 89 García P, Rosa L, Vargas S. et al. Hippo-YAP1 is a prognosis marker and potentially targetable pathway in advanced gallbladder cancer. Cancers (Basel) 2020; 12 (04) 12
  • 90 Pei T, Li Y, Wang J. et al. YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget 2015; 6 (19) 17206-17220
  • 91 Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 2019; 16 (05) 269-281
  • 92 Wu N, Baiocchi L, Zhou T. et al. Functional role of the secretin/secretin receptor signaling during cholestatic liver injury. Hepatology 2020; 72 (06) 2219-2227
  • 93 Maroni L, Haibo B, Ray D. et al. Functional and structural features of cholangiocytes in health and disease. Cell Mol Gastroenterol Hepatol 2015; 1 (04) 368-380
  • 94 Sato K, Meng F, Giang T, Glaser S, Alpini G. Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (4 Pt B): 1262-1269
  • 95 Sato K, Marzioni M, Meng F, Francis H, Glaser S, Alpini G. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 2019; 69 (01) 420-430
  • 96 Kamimoto K, Nakano Y, Kaneko K, Miyajima A, Itoh T. Multidimensional imaging of liver injury repair in mice reveals fundamental role of the ductular reaction. Commun Biol 2020; 3 (01) 289
  • 97 Ko S, Russell JO, Molina LM, Monga SP. Liver progenitors and adult cell plasticity in hepatic injury and repair: knowns and unknowns. Annu Rev Pathol 2020; 15: 23-50
  • 98 Safarikia S, Carpino G, Overi D. et al. Distinct EpCAM-positive stem cell niches are engaged in chronic and neoplastic liver diseases. Front Med (Lausanne) 2020; 7: 479
  • 99 Carpino G, Renzi A, Franchitto A. et al. Stem/progenitor cell niches involved in hepatic and biliary regeneration. Stem Cells Int 2016; 2016: 3658013
  • 100 Kordes C, Häussinger D. Hepatic stem cell niches. J Clin Invest 2013; 123 (05) 1874-1880
  • 101 Raven A, Lu W-Y, Man TY. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 2017; 547 (7663): 350-354
  • 102 Lu W-Y, Bird TG, Boulter L. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol 2015; 17 (08) 971-983
  • 103 Boulter L, Lu W-Y, Forbes SJ. Differentiation of progenitors in the liver: a matter of local choice. J Clin Invest 2013; 123 (05) 1867-1873
  • 104 Huch M, Gehart H, van Boxtel R. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 2015; 160 (1-2): 299-312
  • 105 LeSage GD, Glaser SS, Marucci L. et al. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver. Am J Physiol 1999; 276 (05) G1289-G1301
  • 106 Sun T, Annunziato S, Tchorz JS. Hepatic ductular reaction: a double-edged sword. Aging (Albany NY) 2019; 11 (21) 9223-9224
  • 107 Wilson DB, Rudnick DA. Invasive ductular reaction: form and function. Am J Pathol 2019; 189 (08) 1501-1504
  • 108 Clerbaux LA, Manco R, Van Hul N. et al. Invasive ductular reaction operates hepatobiliary junctions upon hepatocellular injury in rodents and humans. Am J Pathol 2019; 189 (08) 1569-1581
  • 109 Yokoda RT, Rodriguez EA. Review: pathogenesis of cholestatic liver diseases. World J Hepatol 2020; 12 (08) 423-435
  • 110 Lazaridis KN, LaRusso NF. The cholangiopathies. Mayo Clin Proc 2015; 90 (06) 791-800
  • 111 Alvaro D, Mancino MG, Glaser S. et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology 2007; 132 (01) 415-431
  • 112 Meng L, Quezada M, Levine P. et al. Functional role of cellular senescence in biliary injury. Am J Pathol 2015; 185 (03) 602-609
  • 113 Tabibian JH, O'Hara SP, Splinter PL, Trussoni CE, LaRusso NF. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology 2014; 59 (06) 2263-2275
  • 114 Xia X, Demorrow S, Francis H. et al. Cholangiocyte injury and ductopenic syndromes. Semin Liver Dis 2007; 27 (04) 401-412
  • 115 Carpino G, Cardinale V, Renzi A. et al. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J Hepatol 2015; 63 (05) 1220-1228
  • 116 Anakk S, Bhosale M, Schmidt VA, Johnson RL, Finegold MJ, Moore DD. Bile acids activate YAP to promote liver carcinogenesis. Cell Rep 2013; 5 (04) 1060-1069
  • 117 Jin L, Huang H, Ni J. et al. Shh-Yap signaling controls hepatic ductular reactions in CCl4 -induced liver injury. Environ Toxicol 2021; 36 (02) 194-203
  • 118 Planas-Paz L, Sun T, Pikiolek M. et al. YAP, but Not RSPO-LGR4/5, signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury. Cell Stem Cell 2019; 25 (01) 39-53.e10
  • 119 Pi L, Robinson PM, Jorgensen M. et al. Connective tissue growth factor and integrin αvβ6: a new pair of regulators critical for ductular reaction and biliary fibrosis in mice. Hepatology 2015; 61 (02) 678-691
  • 120 Bai H, Zhang N, Xu Y. et al. Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology 2012; 56 (03) 1097-1107
  • 121 Li ZQ, Wu WR, Zhao C. et al. CCN1/Cyr61 enhances the function of hepatic stellate cells in promoting the progression of hepatocellular carcinoma. Int J Mol Med 2018; 41 (03) 1518-1528
  • 122 Nejak-Bowen K. If it looks like a duct and acts like a duct: on the role of reprogrammed hepatocytes in cholangiopathies. Gene Expr 2020; 20 (01) 19-23
  • 123 Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 2005; 41 (03) 535-544
  • 124 Sekiya S, Suzuki A. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. Am J Pathol 2014; 184 (05) 1468-1478
  • 125 Yanger K, Zong Y, Maggs LR. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 2013; 27 (07) 719-724
  • 126 Okabe H, Yang J, Sylakowski K. et al. Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice. Hepatology 2016; 64 (05) 1652-1666
  • 127 Lin S, Nascimento EM, Gajera CR. et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 2018; 556 (7700): 244-248
  • 128 Tarlow BD, Pelz C, Naugler WE. et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 2014; 15 (05) 605-618
  • 129 Andersson ER, Chivukula IV, Hankeova S. et al. Mouse model of alagille syndrome and mechanisms of Jagged1 missense mutations. Gastroenterology 2018; 154 (04) 1080-1095
  • 130 Thakurdas SM, Lopez MF, Kakuda S. et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology 2016; 63 (02) 550-565
  • 131 Mitchell E, Gilbert M, Loomes KM. Alagille Syndrome. Clin Liver Dis 2018; 22 (04) 625-641
  • 132 Li W, Yang L, He Q. et al. A homeostatic arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell 2019; 25 (01) 54-68.e5
  • 133 Li X, Tao J, Cigliano A. et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget 2015; 6 (12) 10102-10115
  • 134 Tao J, Calvisi DF, Ranganathan S. et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 2014; 147 (03) 690-701
  • 135 Claudel T, Zollner G, Wagner M, Trauner M. Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta 2011; 1812 (08) 867-878
  • 136 Wagner M, Zollner G, Trauner M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin Liver Dis 2010; 30 (02) 160-177
  • 137 Nuño-Lámbarri N, Barbero-Becerra VJ, Uribe M, Chávez-Tapia NC. Elevated cholesterol levels have a poor prognosis in a cholestasis scenario. J Biochem Mol Toxicol 2017; 31 (01) 1-6
  • 138 Chisholm JW, Nation P, Dolphin PJ, Agellon LB. High plasma cholesterol in drug-induced cholestasis is associated with enhanced hepatic cholesterol synthesis. Am J Physiol 1999; 276 (05) G1165-G1173
  • 139 Chiang JYL. Bile acid metabolism and signaling in liver disease and therapy. Liver Res 2017; 1 (01) 3-9
  • 140 Zollner G, Trauner M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. Br J Pharmacol 2009; 156 (01) 7-27
  • 141 Kosters A, Karpen SJ. The role of inflammation in cholestasis: clinical and basic aspects. Semin Liver Dis 2010; 30 (02) 186-194
  • 142 Ji S, Liu Q, Zhang S. et al. FGF15 activates hippo signaling to suppress bile acid metabolism and liver tumorigenesis. Dev Cell 2019; 48 (04) 460-474.e9
  • 143 Meyer K, Morales-Navarrete H, Seifert S. et al. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration. Mol Syst Biol 2020; 16 (02) e8985
  • 144 Yu B, Jin GN, Ma M. et al. Taurocholate induces connective tissue growth factor expression in hepatocytes through ERK-YAP signaling. Cell Physiol Biochem 2018; 50 (05) 1711-1725
  • 145 Preziosi ME, Monga SP. Update on the mechanisms of liver regeneration. Semin Liver Dis 2017; 37 (02) 141-151
  • 146 Katzenellenbogen M, Pappo O, Barash H. et al. Multiple adaptive mechanisms to chronic liver disease revealed at early stages of liver carcinogenesis in the Mdr2-knockout mice. Cancer Res 2006; 66 (08) 4001-4010
  • 147 Lanton T, Shriki A, Nechemia-Arbely Y. et al. Interleukin 6-dependent genomic instability heralds accelerated carcinogenesis following liver regeneration on a background of chronic hepatitis. Hepatology 2017; 65 (05) 1600-1611
  • 148 Barash H, R Gross E, Edrei Y. et al. Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks. Proc Natl Acad Sci U S A 2010; 107 (05) 2207-2212
  • 149 Katzenellenbogen M, Mizrahi L, Pappo O. et al. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res 2007; 5 (11) 1159-1170
  • 150 Katzenellenbogen M, Mizrahi L, Pappo O. et al. Molecular mechanisms of the chemopreventive effect on hepatocellular carcinoma development in Mdr2 knockout mice. Mol Cancer Ther 2007; 6 (04) 1283-1291
  • 151 Kamath BM, Munoz PS, Bab N. et al. A longitudinal study to identify laboratory predictors of liver disease outcome in Alagille syndrome. J Pediatr Gastroenterol Nutr 2010; 50 (05) 526-530
  • 152 Sokol RJ, Stall C. Anthropometric evaluation of children with chronic liver disease. Am J Clin Nutr 1990; 52 (02) 203-208
  • 153 Subramaniam P, Knisely A, Portmann B. et al. Diagnosis of Alagille syndrome-25 years of experience at King's College Hospital. J Pediatr Gastroenterol Nutr 2011; 52 (01) 84-89
  • 154 Kamath BM, Ye W, Goodrich NP. et al; Childhood Liver Disease Research Network (ChiLDReN). Outcomes of childhood cholestasis in Alagille syndrome: results of a multicenter observational study. Hepatol Commun 2020; 4 (03) 387-398
  • 155 Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 1999; 29 (03) 822-829
  • 156 Lykavieris P, Hadchouel M, Chardot C, Bernard O. Outcome of liver disease in children with Alagille syndrome: a study of 163 patients. Gut 2001; 49 (03) 431-435
  • 157 Spinner NB, Colliton RP, Crosnier C, Krantz ID, Hadchouel M, Meunier-Rotival M. Jagged1 mutations in alagille syndrome. Hum Mutat 2001; 17 (01) 18-33
  • 158 Crosnier C, Driancourt C, Raynaud N. et al. Mutations in JAGGED1 gene are predominantly sporadic in Alagille syndrome. Gastroenterology 1999; 116 (05) 1141-1148
  • 159 Ryan MJ, Bales C, Nelson A. et al. Bile duct proliferation in Jag1/fringe heterozygous mice identifies candidate modifiers of the Alagille syndrome hepatic phenotype. Hepatology 2008; 48 (06) 1989-1997
  • 160 Tsai EA, Gilbert MA, Grochowski CM. et al. THBS2 is a candidate modifier of liver disease severity in Alagille syndrome. Cell Mol Gastroenterol Hepatol 2016; 2 (05) 663-675.e2
  • 161 Fabris L, Cadamuro M, Guido M. et al. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am J Pathol 2007; 171 (02) 641-653
  • 162 Asai A, Miethke A, Bezerra JA. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol 2015; 12 (06) 342-352
  • 163 Abo-Zeinah SS, Behairy B, Hussein MH. et al. Histopathological expression of Yes-associated protein in neonatal cholestasis. Clin Res Hepatol Gastroenterol 2020; 44 (02) 189-194
  • 164 Gurda GT, Zhu Q, Bai H, Pan D, Schwarz KB, Anders RA. The use of Yes-associated protein expression in the diagnosis of persistent neonatal cholestatic liver disease. Hum Pathol 2014; 45 (05) 1057-1064
  • 165 Shen WJ, Chen G, Wang M, Zheng S. Liver fibrosis in biliary atresia. World J Pediatr 2019; 15 (02) 117-123
  • 166 Ortiz-Perez A, Donnelly B, Temple H, Tiao G, Bansal R, Mohanty SK. Innate immunity and pathogenesis of biliary atresia. Front Immunol 2020; 11: 329
  • 167 Zheng C, Luo J, Yang Y, Dong R, Yu FX, Zheng S. YAP activation and implications in patients and a mouse model of biliary atresia. Front Pediatr 2021; 8: 618226
  • 168 Tharehalli U, Svinarenko M, Kraus JM. et al. YAP activation drives liver regeneration after cholestatic damage induced by Rbpj deletion. Int J Mol Sci 2018; 19 (12) 19
  • 169 Tian L, Ye Z, Kafka K. et al. Biliary atresia relevant human induced pluripotent stem cells recapitulate key disease features in a dish. J Pediatr Gastroenterol Nutr 2019; 68 (01) 56-63
  • 170 Gunadi S, Sirait DN, Budiarti LR. et al. Histopathological findings for prediction of liver cirrhosis and survival in biliary atresia patients after Kasai procedure. Diagn Pathol 2020; 15 (01) 79
  • 171 Safwan M, Ramachandran P, Vij M, Shanmugam N, Rela M. Impact of ductal plate malformation on survival with native liver in children with biliary atresia. Pediatr Surg Int 2015; 31 (09) 837-843
  • 172 Shimadera S, Iwai N, Deguchi E. et al. Significance of ductal plate malformation in the postoperative clinical course of biliary atresia. J Pediatr Surg 2008; 43 (02) 304-307
  • 173 Pacheco MC, Campbell KM, Bove KE. Ductal plate malformation-like arrays in early explants after a Kasai procedure are independent of splenic malformation complex (heterotaxy). Pediatr Dev Pathol 2009; 12 (05) 355-360
  • 174 Vijayan V, El Tan C. Computer-generated three-dimensional morphology of the hepatic hilar bile ducts in biliary atresia. J Pediatr Surg 2000; 35 (08) 1230-1235
  • 175 Tan CE, Chan VS, Yong RY. et al. Distortion in TGF beta 1 peptide immunolocalization in biliary atresia: comparison with the normal pattern in the developing human intrahepatic bile duct system. Pathol Int 1995; 45 (11) 815-824