CC BY-NC-ND 4.0 · Revista Iberoamericana de Cirugía de la Mano 2021; 49(02): e165-e175
DOI: 10.1055/s-0041-1739163
Surgical Technique | Técnica Quirúrgica

Técnica AMIC para el tratamiento de las lesiones condrales de mano y muñeca

Article in several languages: English | español
1   Department of Traumatology and Orthopedic Surgery, HM Nou Delfos, Barcelona, Spain
2   Traumaunit, Centro Médico Teknon, Barcelona, Spain
,
Vicente Carratalà Bauxauli
3   Hand Surgery Unit, Hospital Quirónsalud Valencia, Valencia, Spain
,
4   Orthopedics andTraumatology Department, Hospital Universitario Infanta Leonor, Madrid, Spain
5   Hand Surgery Unit, Hospital Universitario Quirónsalud, Madrid, Madrid, Spain
6   Profesor asociado, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
,
3   Hand Surgery Unit, Hospital Quirónsalud Valencia, Valencia, Spain
2   Traumaunit, Centro Médico Teknon, Barcelona, Spain
› Author Affiliations

Resumen

Las matrices, ya sea utilizadas de forma aislada o asociadas al cultivo de condrocitos, se han demostrado una técnica quirúrgica eficaz para el tratamiento de las lesiones condrales u osteocondrales en rodilla, tobillo y cadera.

Son una alternativa más sofisticada, y aportan algunas ventajas respecto a las más tradicionales técnicas de microfracturas o nanofracturas, usadas éstas de forma aislada.

Asimismo, representan una técnica menos complicada logísticamente y mucho menos cara que las tradicionales del cultivo de condrocitos, al alcance de muy pocos pacientes.

En este artículo, detallamos la técnica a emplear, así como algunas recomendaciones, para el tratamiento de dichas lesiones, en mano y muñeca, mediante la utilización de la matriz de colágeno de origen porcino denominada Chondro-Gide (Geistlich Pharma AG, Wolhausen, Suiza) y su técnica registrada de condrogénesis autóloga inducida por matriz (autologous matrix-induced chondrogenesis, AMIC, en inglés; Geistlich Pharma AG).



Publication History

Received: 24 August 2021

Accepted: 01 October 2021

Article published online:
13 December 2021

© 2021. SECMA Foundation. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Benthien JP, Behrens P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 2011; 19 (08) 1316-1319
  • 2 Piontek T, Ciemniewska-Gorzela K, Szulc A, Naczk J, Słomczykowski M. All-arthroscopic AMIC procedure for repair of cartilage defects of the knee. Knee Surg Sports Traumatol Arthrosc 2012; 20 (05) 922-925
  • 3 Behrens P. Matrixgekoppelte Mikrofrakturierung. Ein neues Konzept zur Knorpeldefektbehandlung. Arthroskopie 2005; 18 (03) 193-197
  • 4 Pridie K. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg [Br] 5 1959; 41: 618-619
  • 5 Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; (391, Suppl) S362-S369
  • 6 Lee KB, Bai LB, Chung JY, Seon JK. Arthroscopic microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 2010; 18 (02) 247-253
  • 7 Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy 2008; 24 (01) 106-112
  • 8 Hannon CP, Murawski CD, Fansa AM, Smyth NA, Do H, Kennedy JG. Microfracture for osteochondral lesions of the talus: a systematic review of reporting of outcome data. Am J Sports Med 2013; 41 (03) 689-695
  • 9 Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 2014; 22 (09) 1986-1996
  • 10 Benthien JP, Behrens P. Nanofractured autologous matrix induced chondrogenesis (NAMIC©)–Further development of collagen membrane aided chondrogenesis combined with subchondral needling: A technical note. Knee 2015; 22 (05) 411-415
  • 11 Peñalver JM, Villalba J, Yela-Verdú CP. et al. All-Arthroscopic Nanofractured Autologous Matrix-Induced Chondrogenesis (A-NAMIC) Technique for the Treatment of Focal Chondral Lesions of the Knee. Arthrosc Tech 2020; 9 (06) e755-e759 DOI: 10.1016/j.eats.2020.02.007.
  • 12 Migliorini F, Eschweiler J, Maffulli N. et al. Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study. Life (Basel) 2021; 11 (03) 244 Pages 1–9 . DOI: 10.3390/life11030244.
  • 13 Valderrabano V, Miska M, Leumann A, Wiewiorski M. Reconstruction of Osteochondral Lesions of the Talus With Autologous Spongiosa Grafts and Autologous Matrix-Induced Chondrogenesis. The American Journal of Sports Medicine 2013; 41 (03) 519-527 DOI: 10.1177/0363546513476671.
  • 14 Steinwachs M, Kreuz PC. Autologous Chondrocyte Implantation in Chondral Defects of the Knee With a Type I/III Collagen Membrane: A Prospective Study With a 3-Year Follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery 2007; 23 (04) 381-387 DOI: 10.1016/j.arthro.2006.12.003.
  • 15 Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC). A one-step procedure for retropatellar articular resurfacing. Acta Orthop Belg 2010; 76 (02) 260-263
  • 16 Steinwachs MR, Gille J, Volz M, Anders S, Jakob R, De Girolamo L, Wittmann U. Systematic Review and Meta-Analysis of the Clinical Evidence on the Use of Autologous Matrix-Induced Chondrogenesis in the Knee. 2019. 1-15 CARTILAGE 194760351987084. doi:10.1177/1947603519870846
  • 17 Gao L, Orth P, Cucchiarini M, Madry H. Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence. Am J Sports Med 2019; Jan; 47 (01) 222-231 DOI: 10.1177/0363546517740575PMID: 29161138.
  • 18 Becher C, Malahias MA, Ali MM, Maffulli N, Thermann H. (2018). Arthroscopic microfracture vs. arthroscopic autologous matrix-induced chondrogenesis for the treatment of articular cartilage defects of the talus. Knee Surgery, Sports Traumatology, Arthroscopy 2019; 27: 2731-2736 DOI: 10.1007/s00167-018-5278-7.
  • 19 Kaufman D, Etcheson J, Yao J. Microfracture for Ulnar Impaction Syndrome: Surgical Technique and Outcomes with Minimum 2-Year Follow-up. Journal of Wrist Surgery 2016; 6 (01) 60-64 DOI: 10.1055/s-0036-1586496.
  • 20 Kaiser N, Jacobi M, Kusano T. et al. Clinical results 10 years after AMIC in the knee. Swiss Med Wkly 2015; 145 (Suppl. 210) 43S
  • 21 Gille J, Kunow J, Boisch L. et al. Cell-Laden and Cell-Free Matrix-Induced Chondrogenesis versus Microfracture for the Treatment of Articular Cartilage Defects: A Histological and Biomechanical Study in Sheep. Cartilage 2010; 1 (01) 29-42 DOI: 10.1177/1947603509358721.
  • 22 Volz M, Schaumburger J, Frick H, Grifka J, Anders S. A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop 2017; 41 (04) 797-804
  • 23 Kramer J, Böhrnsen F, Lindner U. et al. In vivo matrix-guided human mesenchymal stem cells. Cell Mol Life Sci 2006; 63 (05) 616-626 DOI: 10.1007/s00018-005-5527-z.
  • 24 Gomoll AH, Farr J, Gillogly SD. et al. Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am 2010; 92 (14) 2470-2490
  • 25 Mumme M, Barbero A, Miot S. et al. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet 2016; 388 (10055): 1985-1994
  • 26 Fulco I, Miot S, Haug MD. et al. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet 2014; 384 (9940): 337-346