Subscribe to RSS
DOI: 10.1055/s-0041-1738448
Photoredox-Catalyzed Radical–Radical Coupling of Potassium Trifluoroborates with Acyl Azoliums
We gratefully acknowledge support from the National Institute of General Medical Sciences (NIH) for support of this work (R35 GM136440). D.Y. and E.J.F. thank Northwestern for Undergraduate Research Grants. D.Y. thanks the Chemistry of Life Processes Institute at Northwestern for support in the form of the Lambert Fellowship.
Abstract
Potassium trifluoroborates have gained significant utility as coupling partners in organic synthesis, particularly in the Suzuki–Miyaura coupling reaction. Recently, they have also been used as radical precursors under oxidative conditions to generate carbon-centered radicals. These versatile reagents have found new applications in photoredox catalysis, including radical substitution, conjugate-addition reactions, and transition-metal dual catalysis. In addition, this photomediated redox-neutral process has enabled radical–radical coupling with persistent radicals in the absence of a metal, and this process remains to be fully explored. In this study, we report the radical–radical coupling of potassium benzylic trifluoroborate salts with isolated acyl azolium triflates, which are persistent-radical precursors. The reaction is catalyzed by an organic photocatalyst and forms isolable tertiary alcohol species. These products can be transformed into a range of substituted ketone products by simple treatment with a mild base.
Key words
potassium trifluoroborate - photoredox catalysis - organophotocatalysis - acyl azolium compounds - radical–radical coupling - ketonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738448.
- Supporting Information
Publication History
Received: 04 May 2023
Accepted after revision: 14 June 2023
Article published online:
16 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Matteson DS, Mah RW. H. J. Am. Chem. Soc. 1963; 85: 2599
- 1b Evans DA, Vogel E, Nelson JV. J. Am. Chem. Soc. 1979; 101: 6120
- 1c Miyaura N, Yanagi T, Suzuki A. Synth. Commun. 1981; 11: 513
- 2a Cowden CJ, Paterson I. In Organic Reactions . Wiley; Chichester: 2004. DOI DOI: 10.1002/0471264180.or051.01
- 2b Doucet H. Eur. J. Org. Chem. 2008; 2008: 2013
- 2c Sandford C, Aggarwal VK. Chem. Commun. 2017; 53: 5481
- 2d Hall DG. Chem. Soc. Rev. 2019; 48: 3475
- 2e Abiko A. In Patai’s Chemistry of Functional Groups . Rappoport Z. Wiley; Chichester: 2020. DOI DOI: 10.1002/9780470682531.pat0977
- 3a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 3b Dombrowski AW, Aguirre AL, Shrestha A, Sarris KA, Wang Y. J. Org. Chem. 2022; 87: 1880
- 4a Chambers RD, Clark HC, Willis CJ. J. Am. Chem. Soc. 1960; 82: 5298
- 4b Molander GA, Sandrock DL. Curr. Opin. Drug Discovery Dev. 2009; 12: 811
- 4c Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
- 5a Vedejs E, Chapman RW, Fields SC, Lin S, Schrimpf MR. J. Org. Chem. 1995; 60: 3020
- 5b Clay JM, Vedejs E. J. Am. Chem. Soc. 2005; 127: 5766
- 6 Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
- 7a Sorin G, Martinez MallorquinR, Contie Y, Baralle A, Malacria M, Goddard J.-P, Fensterbank L. Angew. Chem. Int. Ed. 2010; 49: 8721
- 7b Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Del Bel M, Baran PS. J. Am. Chem. Soc. 2011; 133: 3292
- 7c Molander GA, Colombel V, Braz VA. Org. Lett. 2011; 13: 1852
- 7d Lockner JW, Dixon DD, Risgaard R, Baran PS. Org. Lett. 2011; 13: 5628
- 8 Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
- 9 Yasu Y, Koike T, Akita M. Adv. Synth. Catal. 2012; 354: 3414
- 10 Miyazawa K, Yasu Y, Koike T, Akita M. Chem. Commun. 2013; 49: 7249
- 11 Xie J, Jin H, Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
- 12a Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
- 12b Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
- 12c Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 12d Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 12e Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
- 12f Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 12g Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 13 Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis. . University Science Books; Mill Valley: 2010
- 14a Amani J, Sodagar E, Molander GA. Org. Lett. 2016; 18: 732
- 14b Amani J, Molander GA. J. Org. Chem. 2017; 82: 1856
- 15 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
- 16 Fischer H. Chem. Rev. 2001; 101: 3581
- 17a Daikh BE, Finke RG. J. Am. Chem. Soc. 1992; 114: 2938
- 17b Leifert D, Studer A. Angew. Chem. Int. Ed. 2020; 59: 74
- 18a Zhang L, Chu Y, Ma P, Zhao S, Li Q, Chen B, Hong X, Sun J. Org. Biomol. Chem. 2020; 18: 1073
- 18b Ota K, Nagao K, Ohmiya H. Org. Lett. 2021; 23: 4420
- 18c Jiang H.-L, Yang Y.-H, He Y.-H, Guan Z. Org. Lett. 2022; 24: 4258
- 18d Bay AV, Scheidt KA. Trends Chem. 2022; 4: 277
- 19 Ishii T, Kakeno Y, Nagao K, Ohmiya H. J. Am. Chem. Soc. 2019; 141: 3854
- 20a Bay AV, Fitzpatrick KP, Betori RC, Scheidt KA. Angew. Chem. Int. Ed. 2020; 59: 9143
- 20b Bay AV, Fitzpatrick KP, González-Montiel GA, Farah AO, Cheong PH.-Y, Scheidt KA. Angew. Chem. Int. Ed. 2021; 60: 17925
- 21a Bayly AA, McDonald BR, Mrksich M, Scheidt KA. Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 13261
- 21b Rourke MJ, Wang CT, Schull CR, Scheidt KA. ACS Catal. 2023; 13: 7987
- 21c Zhu JL, Schull CR, Tam AT, Rentería-Gómez Á, Gogoi AR, Gutierrez O, Scheidt KA. J. Am. Chem. Soc. 2023; 145: 1535
- 21d Zhu JL, Scheidt KA. Tetrahedron 2021; 92: 132288
- 21e Wang P, Fitzpatrick KP, Scheidt KA. Adv. Synth. Catal. 2022; 364: 518
- 22a Mavroskoufis A, Rajes K, Golz P, Agrawal A, Ruß V, Götze JP, Hopkinson MN. Angew. Chem. Int. Ed. 2020; 59: 3190
- 22b Meng Q.-Y, Döben N, Studer A. Angew. Chem. Int. Ed. 2020; 59: 19956
- 22c Liu K, Studer A. J. Am. Chem. Soc. 2021; 143: 4903
- 22d Meng Q.-Y, Lezius L, Studer A. Nat. Commun. 2021; 12: 2068
- 22e Sato Y, Goto Y, Nakamura K, Miyamoto Y, Sumida Y, Ohmiya H. ACS Catal. 2021; 11: 12886
- 22f Ren S.-C, Lv W.-X, Yang X, Yan J.-L, Xu J, Wang F.-X, Hao L, Chai H, Jin Z, Chi YR. ACS Catal. 2021; 11: 2925
- 22g Mavroskoufis A, Rieck A, Hopkinson MN. Tetrahedron 2021; 100: 132497
- 22h Wang X, Zhu B, Liu Y, Wang Q. ACS Catal. 2022; 12: 2522
- 23 CCDC 2260682 and 2260683 contains the supplementary crystallographic data for compound 3c and 5c, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 24 Coupling of Potassium Trifluoroborates and Acyl Azolium Triflates; General ProcedureIn a glovebox with an inert N2 atmosphere, a flame-dried 2-dram vial equipped with a magnetic stirrer bar was sequentially charged with 4CzIPN (2 mol%), the appropriate acyl azolium 2 (1 equiv, 0.5 mmol), and RBF3K salt 1 (1.1 equiv), which were suspended in anhyd freeze–pump–thaw degassed MeCN (2.5 mL, 0.2 M). TFA (1.0 equiv) was then added to the mixture, and the vial was sealed and irradiated, with stirring, by Kessil PhotoReaction PR 160L (λ = 456 nm) LEDs at 100% intensity, arranged radially around the vial. After 18–24 h of irradiation, the vial was removed from the light source, and the reaction was monitored by LC-MS for the disappearance of the acyl azolium and the formation of the resulting tetrahedral intermediate analogous to 4a. DBU (1.0 equiv) was added, resulting in darkening of the reaction mixture under stirring. The disappearance of the tetrahedral intermediate was monitored by LC-MS (typically 10 min). The mixture was then diluted with EtOAc (12.5 mL) then washed once with an equivalent volume of sat. aq NH4Cl. The organic layer was dried via a brine wash and the aqueous layers were back-extracted with EtOAc. The combined organic layers were then dried (Na2SO4), concentrated in vacuo, and purified by flash column chromatography [silica gel, hexanes–EtOAc (20:1)]
- 25 1,4-Diphenylbutan-2-one (3a)White solid; yield: 56 mg (47%). 1H NMR (500 MHz, CDCl3): δ = 7.35–7.30 (m, 2 H), 7.29–7.23 (m, 3 H), 7.23–7.16 (m, 3 H), 7.13 (d, J = 6.8 Hz, 2 H), 3.67 (s, 2 H), 2.88 (t, J = 7.2 Hz, 2 H), 2.77 (d, J = 7.2 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 207.6, 141.1, 134.2, 129.5, 128.9, 128.6, 128.5, 127.2, 126.2, 50.5, 43.6, 29.9
- 26 1-Cyclohexyl-2-phenylethanone (3g)Clear oil; yield: 76.8 mg (76%). 1H NMR (500 MHz, CDCl3): δ = 7.34–7.29 (m, 2 H), 7.28–7.23 (m, 1 H), 7.20–7.14 (m, 2 H), 3.73 (s, 2 H), 2.46 (tt, J = 11.5, 3.5 Hz, 1 H), 1.86–1.72 (m, 4 H), 1.69–1.62 (m, 1 H), 1.41–1.31 (m, 2 H), 1.31–1.13 (m, 3 H). 13C NMR (126 MHz, CDCl3): δ = 211.4, 134.6, 129.6, 128.7, 127.0, 50.3, 48.0, 28.7, 26.0, 25.8
- 27 1,2-Diphenylethanone (3k)White solid; yield: 60.8 mg (62%). 1H NMR (500 MHz, CDCl3): δ = 8.00–7.95 (m, 2 H), 7.55–7.48 (m, 1 H), 7.45–7.38 (m, 2 H), 7.32–7.26 (m, 2 H), 7.24–7.18 (m, 3 H), 4.25 (s, 2 H). 13C NMR (126 MHz, CDCl3): δ = 197.7, 136.7, 134.7, 133.3, 129.6, 128.8, 128.8, 128.7, 127.0, 45.6
- 28 De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F. Org. Lett. 2007; 9: 2721
- 29 Parsaee F, Senarathna MC, Kannangara PB, Alexander SN, Arche PD. E, Welin ER. Nat. Rev. Chem. 2021; 5: 486
- 30 Tarantino KT, Liu P, Knowles RR. J. Am. Chem. Soc. 2013; 135: 10022
- 31 Du J, Espelt LR, Guzei IA, Yoon TP. Chem. Sci. 2011; 2: 2115