Synthesis 2022; 54(09): 2213-2224
DOI: 10.1055/s-0041-1737804
paper

Sc(OTf)3-Catalyzed [3+2]-Cycloaddition of Diazoacetoacetate Enones and N-Aryl Nitrones: Diastereoselective Synthesis of Functionalized Isoxazolidines with Three Contiguous Stereogenic Centers

Yingjun Zhao
,
Di Wu
,
Xichen Xu
This work was supported by the National Natural Science Foundation of China (21801198), the Wuhan Institute of Technology (17QD05), and the Graduate Innovation Fund of Wuhan Institute of Technology (CX2020280).


Abstract

A catalytic [3+2]-cycloaddition using Sc(OTf)3 as a Lewis acid catalyst is developed. This catalytic 1,3-dipolar cycloaddition dia­stereoselectively transforms diazoacetoacetate enones and N-aryl nitrones into highly functionalized isoxazolidines bearing three contiguous chiral centers. The feasibility of the uncatalyzed 1,3-dipolar cycloaddition is postulated by DFT calculations and substantiated experimentally.

Supporting Information



Publikationsverlauf

Eingereicht: 23. November 2021

Angenommen nach Revision: 14. Dezember 2021

Artikel online veröffentlicht:
01. Februar 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Cornil J, Gonnard L, Bensoussan C, Serra-Muns A, Gnamm C, Commandeur C, Commandeur M, Reymond S, Guerinot A, Cossy J. Acc. Chem. Res. 2015; 48: 761
  • 2 Berthet M, Cheviet T, Dujardin G, Parrot I, Martinez J. Chem. Rev. 2016; 116: 15235
  • 3 Chiacchio MA, Giofre SV, Romeo R, Romeo G, Chiacchio U. Curr. Org. Synth. 2016; 13: 726
  • 4 Stanley LM, Sibi MP. Chem. Rev. 2008; 108: 2887
  • 5 Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
  • 6 Murahashi SI, Imada Y. Chem. Rev. 2019; 119: 4684
  • 7 Breugst M, Reissig H.-U. Angew. Chem. Int. Ed. 2020; 59: 12293
  • 8 Deng Y, Qiu H, Srinivas HD, Doyle MP. Curr. Org. Chem. 2016; 20: 61
  • 9 Wang Z, Martin SF. Org. Lett. 2020; 22: 9071
  • 10 Smith KL, Padgett CL, MacKay WD, Johnson JS. J. Am. Chem. Soc. 2020; 142: 6449
  • 11 Xu X, Wang Y, Cui X, Wojtas L, Zhang XP. Chem. Sci. 2017; 8: 4347
  • 12 Lin L, Fukagawa S, Sekine D, Tomita E, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2018; 57: 12048
  • 13 Phelps R, Orr-Ewing AJ. J. Am. Chem. Soc. 2020; 142: 7836
  • 14 Cheng Q.-Q, Yedoyan J, Arman H, Doyle MP. J. Am. Chem. Soc. 2016; 138: 44
  • 15 Taylor EC, Davies HM. L. Tetrahedron Lett. 1983; 24: 5453
  • 16 Collomb D, Doutheau A. Tetrahedron Lett. 1997; 38: 1397
  • 17 Mandler MD, Truong PM, Zavalij PY, Doyle MP. Org. Lett. 2014; 16: 740
  • 18 Shanahan CS, Truong P, Mason SM, Leszczynski JS, Doyle MP. Org. Lett. 2013; 15: 3642
  • 19 Truong PM, Mandler MD, Shanahan CS, Doyle MP. Heterocycles 2014; 88: 1039
  • 20 The DFT calculations were performed at the PWPB95-D3/def2-QZVPP//ωB97X-D/def2-TZVP level of theory in the gas phase (see the Supporting Information for details)
  • 21 Mayer I. J. Comput. Chem. 2007; 28: 204
  • 22 Lu T, Chen F. J. Comput. Chem. 2012; 33: 580
  • 23 The DFT calculations were performed at the PWPB95-D3/def2-QZVPP//B3LYP-D3/def2-SV level of theory with the SMD solvation model used for chloroform (see the Supporting Information for details).
  • 24 CCDC 2068697 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre viawww.ccdc.cam.ac.uk/structures