Synlett 2022; 33(03): 247-258 DOI: 10.1055/s-0041-1737792
Tuning the Electrochemical and Photophysical Properties of Osmium-Based Photoredox Catalysts
Samantha L. Goldschmid
a
Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Eva Bednářová‡
a
Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Logan R. Beck‡
a
Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Katherine Xie
a
Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Nicholas E. S. Tay
a
Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Benjamin D. Ravetz
a
Department of Chemistry, Columbia University, New York, New York 10027, USA
,
Jun Li
b
Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, USA
,
Candice L. Joe
b
Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, USA
,
a
Department of Chemistry, Columbia University, New York, New York 10027, USA
› Institutsangaben E.B. acknowledges the Experientia Foundation for a postdoctoral fellowship. We are grateful to Bristol-Myers Squibb for support.
Abstract
The use of low-energy deep-red (DR) and near-infrared (NIR) light to excite chromophores enables catalysis to ensue across barriers such as materials and tissues. Herein, we report the detailed photophysical characterization of a library of OsII polypyridyl photosensitizers that absorb low-energy light. By tuning ligand scaffold and electron density, we access a range of synthetically useful excited state energies and redox potentials.
1 Introduction
1.1 Scope
1.2 Measuring Ground-State Redox Potentials
1.3 Measuring Photophysical Properties
1.4 Synthesis of Osmium Complexes
2 Properties of Osmium Complexes
2.1 Redox Potentials of Os(L)2 -Type Complexes
2.2 Redox Potentials of Os(L)3 -Type Complexes
2.3 UV/Vis Absorption and Emission Spectroscopy
3 Conclusions
Key words
photoredox catalysis -
near-infrared -
ligand design
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1737792.
Supporting Information
Publikationsverlauf
Eingereicht: 16. November 2021
Angenommen nach Revision: 29. Dezember 2021
Artikel online veröffentlicht: 14. Januar 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1
Romero NA,
Nicewicz DA.
Chem. Rev. 2016; 116: 10075
2
Prier CK,
Rankic DA,
MacMillan DW. C.
Chem. Rev. 2013; 113: 5322
3
Ravetz BD,
Pun AB,
Churchill EM,
Congreve DN,
Rovis T,
Campos LM.
Nature 2019; 565: 343
4
Ravetz BD,
Tay NE. S,
Joe CL,
Sezen-Edmonds M,
Schmidt MA,
Tan Y,
Janey JM,
Eastgate MD,
Rovis T.
ACS Cent. Sci. 2020; 6: 2053
5
Mei L,
Veleta JM,
Gianetti TL.
J. Am. Chem. Soc. 2020; 142: 12056
6
Demadis KD,
Dattelbaum DM,
Kober EM,
Concepcion JJ,
Paul JJ,
Meyer TJ,
White PS.
Inorg. Chim. Acta 2007; 360: 1143
7
Stull SM,
Mei L,
Gianetti TL.
Synlett 2021; in press; DOI: 10.1055/a-1665-9220
8
Wang C,
Zhang H,
Zhang T,
Zou X,
Wang H,
Rosenberger JE,
Vannam R,
Trout WS,
Grimm JB,
Lavis LD,
Thorpe C,
Jia X,
Li Z,
Fox JM.
J. Am. Chem. Soc. 2021; 143: 10793
9
Fajardo JJr,
Barth AT,
Morales M,
Takase MK,
Winkler JR,
Gray HB.
J. Am. Chem. Soc. 2021; 143: 19389
10
Lechner VM,
Nappi M,
Deneny PJ,
Folliet S,
Chu JC. K,
Gaunt MJ.
Chem. Rev. 2021; in press; DOI
11
Thompson DW,
Ito A,
Meyer T.
J. Pure Appl. Chem. 2013; 85: 1257
12
van der Westhuizen D,
Conradie J,
von Eschwege KG.
Electroanalysis 2020; 32: 2838
13
Liu A,
Anzai J,
Wang J.
Bioelectrochemistry 2005; 67: 1
14
Liu Y,
De Nicola A,
Reiff O,
Ziessel R,
Schanze KS.
J. Phys. Chem. A 2003; 107: 3476
15
Bard AJ,
Faulkner LR.
Electrochemical Methods : Fundamentals and Applications, 2nd ed.
Harris D,
Swain E.
John Wiley & Sons; New York: 2004
16
Gritzner G,
Kuta J.
Pure Appl. Chem. 1984; 56: 461
17
Elgrishi N,
Rountree KJ,
McCarthy BD,
Rountree ES,
Eisenhart TT,
Dempsey JL.
J. Chem. Educ. 2017; 95: 197
18
Jones WE,
Fox MA.
J. Phys. Chem. 1994; 98: 5095
19
Oda N,
Tsuji K,
Ichimura A.
Anal. Sci. 2001; 17: 375
20
Riis-Johannessen T,
Dupont N,
Canard G,
Bernardinelli G,
Hauser A,
Piguet C.
Dalton Trans. 2008; 3661
21
Johnson SR,
Westmoreland TD,
Caspar JV,
Barqawi KR,
Meyer T.
J. Inorg. Chem. 1988; 27: 3195
22
Xu W,
Peng B,
Chen J,
Liang M,
Cai F.
J. Phys. Chem. C 2008; 112: 874
23
Till NA,
Tian L,
Dong Z,
Scholes GD,
MacMillan DW. C.
J. Am. Chem. Soc. 2020; 142: 15830
24
Kandoth N,
Hernández JP,
Palomares E,
Lloret-Fillol J.
Sustainable Energy Fuels 2021; 5: 638
25
Ondongo OS,
Endicott JF.
Inorg. Chem. 2009; 48: 2818
26
Shao JY,
Zhong YW.
Inorg. Chem. 2013; 52: 6464
27
Wei Y,
Zheng M,
Chen L,
Zhou X,
Liu S.
Dalton Trans. 2019; 48: 11763
28
Amemori S,
Sasaki Y,
Yanai N,
Kimizuka N.
J. Am. Chem. Soc. 2016; 138: 8702