Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(09): 2258-2266
DOI: 10.1055/s-0041-1737341
DOI: 10.1055/s-0041-1737341
paper
DMSO-Mediated Difunctionalization of Electron-Deficient Olefins to Access β-Hydroxysulfides with High Chemoselectivity
We are grateful for financial support from the National Natural Science Foundation of China (21702197), Anhui Agricultural University (yj2018-45), and Graduate Innovation Fund of Anhui Agricultural University (2021yjs-32).
Abstract
A novel and convenient method for the highly chemoselective synthesis of β-hydroxysulfides mediated by DMSO is reported. This eco-friendly reaction was amenable to a broad range of substrates and provided the desired β-hydroxysulfides in moderate to good yields with high selectivity via radical process. Moreover, several pharmaceutical and bioactive molecules were also suitable substrates for this reaction conditions to afford the targeted products in good yields.
Key words
β-hydroxysulfides - chemoselective synthesis - electron-deficient alkenes - radical process - air atmosphereSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1737341.
- Supporting Information
Publication History
Received: 24 November 2021
Accepted after revision: 16 December 2021
Article published online:
09 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. Eur. J. 2000; 6: 3321
- 1b Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
- 1c Dömling A. Chem. Rev. 2006; 106: 17
- 1d Toure BB, Hall DG. Chem. Rev. 2009; 109: 4439
- 1e Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 1f de Graaff C, Ruijter E, Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
- 1g Brauch S, Van Berkel SS, Westermann B. Chem. Soc. Rev. 2013; 42: 4948
- 1h Garbarino S, Ravelli D, Protti S, Basso A. Angew. Chem. Int. Ed. 2016; 55: 15476
- 2a Huang S.-X, Ding K.-L. Angew. Chem. Int. Ed. 2011; 50: 7734
- 2b Bataille CJ. R, Donohoe TJ. Chem. Soc. Rev. 2011; 40: 114
- 2c Chemler SR, Bovino MT. ACS Catal. 2013; 3: 1076
- 2d Muñiz K, Martínez C. J. Org. Chem. 2013; 78: 2168
- 2e Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294
- 2f Fang G, Bi X. Chem. Soc. Rev. 2015; 44: 8124
- 2g Wang F, Yu S, Li X. Chem. Soc. Rev. 2016; 45: 6462
- 2h Bao X, Li J, Jiang W, Huo C. Synthesis 2019; 51: 4507
- 2i Guo G, Yuan Y, Wan S, Cao X, Sun Y, Huo C. Org. Chem. Front. 2021; 8: 2990
- 2j Li J, Yuan Y, Bao Z, Sang T, Yang J, Huo C. Org. Lett. 2021; 23: 3712
- 3a Rastogi SN, Anand N, Prasad CR. J. Med. Chem. 1972; 15: 286
- 3b Corey EJ, Clark DA, Goto G, Marfat A, Mioskowski C, Samuelsson B, Hammarstroem S. J. Am. Chem. Soc. 1980; 102: 1436
- 3c Luly JR, Yi N, Soderquist J, Stein H, Cohen J, Perun TJ, Plattner JJ. J. Med. Chem. 1987; 30: 1609
- 3d Hoefle ML, Blouin LT, Fleming RW, Hastings S, Hinkley JM, Mertz TE, Steffe TJ, Stratton CS, Werbel LM. J. Med. Chem. 1991; 34: 7
- 3e Medou M, Priem G, Rocheblave L, Pepe G, Meyer M, Chermann J.-C, Kraus J.-L. Eur. J. Med. Chem. 1999; 34: 625
- 3f Viola F, Balliano G, Milla P, Cattel L, Rocco F, Ceruti M. Bioorg. Med. Chem. 2000; 8: 223
- 3g Robin A, Brown F, Bahamontes-Rosa N, Wu B, Beitz E, Kun JF. J, Flitsch SL. J. Med. Chem. 2007; 50: 4243
- 3h Shulaeva MM, Fattakhov SG, Saifina LF, Chestnova RV, Valijev RS, Mingaleev DN, Voloshina AD, Reznik VS. Eur. J. Med. Chem. 2012; 53: 300
- 3i Kumar AB, Anderson JM, Melendez AL, Manetsch R. Bioorg. Med. Chem. Lett. 2012; 22: 4740
- 3j Wang G, Han T, Nijhawan D, Theodoropoulos P, Naidoo J, Yadavalli S, Mirzaei H, Pieper AA, Ready JM, McKnight SL. Cell 2014; 158: 1324
- 4a Yin C, Huo F, Zhang J, Martinez-Manez R, Yang Y, Lv H, Li S. Chem. Soc. Rev. 2013; 42: 6032
- 4b Denes F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
- 5 Kharasch MS, Nudenberg W, Mantell GJ. J. Org. Chem. 1951; 16: 524
- 6a Zhou SF, Pan X, Zhou Z.-H, Shoberu A, Zou J.-P. J. Org. Chem. 2015; 80: 3682
- 6b Wang H, Lu Q, Qian C, Liu C, Liu W, Chen K, Lei A. Angew. Chem. Int. Ed. 2016; 55: 1094
- 6c Zhang B, Liu T, Bian Y, Lu T, Feng J. ACS Sustainable Chem. Eng. 2018; 6: 2651
- 6d Choudhuri K, Mandal A, Mal P. Chem. Commun. 2018; 54: 3759
- 6e Wang Y, Deng L, Mei H, Du B, Han J, Pan Y. Green Chem. 2018; 20: 3444
- 6f He R, Chen X, Li Y, Liu Q, Liao C, Chen L, Huang Y. J. Org. Chem. 2019; 84: 8750
- 7 Ueda M, Miyabe H, Shimizu H, Sugino H, Miyata O, Naito T. Angew. Chem. Int. Ed. 2008; 47: 5600
- 8 Xi H, Deng B, Zong Z, Lu S, Li Z. Org. Lett. 2015; 17: 1180
- 9 Huo C, Wang Y, Yuan Y, Chen F, Tang J. Chem. Commun. 2016; 52: 7233
- 10a Epstein WW, Sweat FW. Chem. Rev. 1967; 67: 247
- 10b Martin HD, Weise A, Niclas H.-J. Angew. Chem. Int. Ed. 1967; 6: 318
- 12a Kornblum N, Powers JW, Anderson GJ, Jones WJ, Larson HO, Levand O, Weaver WM. J. Am. Chem. Soc. 1957; 79: 6562
- 12b Kornblum N, Jones WJ, Anderson GJ. J. Am. Chem. Soc. 1959; 81: 4113
- 13a Khenkin AM, Neumann R. J. Am. Chem. Soc. 2002; 124: 4198
- 13b Ashikari Y, Nokami T, Yoshida J. Org. Lett. 2012; 14: 938
- 13c Chebolu R, Bahuguna A, Sharma R, Mishra VK, Ravikumar PC. Chem. Commun. 2015; 51: 15438
- 13d Liang Y.-F, Wu K, Song S, Li X, Huang X, Jiao N. Org. Lett. 2015; 17: 876
- 14a Xu R, Wan J.-P, Mao H, Pan Y. J. Am. Chem. Soc. 2010; 132: 15531
- 14b Ashikari Y, Nokami T, Yoshida J.-I. Org. Lett. 2012; 14: 938
- 14c Liang Y.-F, Wu K, Song S, Li X, Huang X, Jiao N. Org. Lett. 2015; 17: 876
- 14d Liang Y.-F, Li X, Wang X, Zou M, Tang C, Liang Y, Song S, Jiao N. J. Am. Chem. Soc. 2016; 138: 12271
- 15 Shen W.-G, Wu Q.-Y, Gong X.-Y, Ao G.-Z, Liu F. Green Chem. 2019; 21: 2983
- 16 Zhang J, Loh T.-P. Chem. Commun. 2012; 48: 11232
- 17 Correia VG, Abreu JC, Barata CA. E, Andrade LH. Org. Lett. 2017; 19: 1060
- 18 Zhang L, Wang Y, Yang Y, Zhang P, Wang C. Org. Chem. Front. 2020; 7: 3234
For reviews, see:
For reviews, see:
For reviews, see: