Synlett 2022; 33(07): 689-693
DOI: 10.1055/s-0041-1737338
letter

1,4,2-Dioxazol-5-ones as Isocyanate Equivalents: Chemoselective Non-Metal-Catalyzed Carboxamidation of Indoles

a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
Deepa Parmar
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
Rahul Rayani
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
Rakesh Kusurkar
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
,
Uttam Kaneriya
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
,
Uday Gondaliya
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
,
Nirali Parmar
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
,
Jigar Y. Soni
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
› Institutsangaben


Abstract

1,4,2-Dioxazol-5-ones are known to undergo decarboxylation under thermal conditions followed by Lossen’s rearrangement to give isocyanates. Described herein is the in situ trapping of the isocyanates by indoles to give indole-3-carboxamides in good to excellent yields.

Supporting Information



Publikationsverlauf

Eingereicht: 07. Januar 2022

Angenommen nach Revision: 15. Januar 2022

Artikel online veröffentlicht:
03. Februar 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 5 Smaliy RV, Chaikovskaya AA, Pinchuk AM, Tolmachev AA. Synthesis 2003; 2525
    • 7a Velavan A, Sumathi S, Balasubramanian KK. Eur. J. Org. Chem. 2013; 3148
    • 7b Adam JM, Cairns J, Caulfield W, Cowley P, Cumming I, Easson M, Edwards D, Ferguson M, Goodwin R, Jeremiah F, Kiyoi T, Mistry A, Moir E, Morphy R, Tierney J, York M, Baker J, Cottney JE, Houghton AK, Westwood PJ, Walker G. Med. Chem. Commun. 2010; 1: 54
    • 8a Uehara A, Olivero S, Michelet B, Martin-Mingot A, Thibaudeau S, Duñach E. Eur. J. Org. Chem. 2019; 46
    • 8b Hall A, Billinton A, Brown SH, Chowdhury A, Giblin GM. P, Goldsmith P, Hurst DN, Naylor A, Patel S, Scoccitti T, Theobald PJ. Bioorg. Med. Chem. Lett. 2008; 18: 2684
  • 9 Nishida Y, Takeda N, Matsuno K, Miyata O, Ueda M. Eur. J. Org. Chem. 2018; 3928
  • 10 Nemoto K, Tanaka S, Konno M, Onozawa S, Chiba M, Tanaka Y, Sasaki Y, Okubo R, Hattori T. Tetrahedron 2016; 72: 734
    • 12a Wallis ES, Lane JF. Org. React. 1946; 3: 267
    • 12b Beckwith RC, Margerum DW. Inorg. Chem. 1997; 36 (17), 3754
    • 12c Barkalow JH, Breting J, Gaede BJ, Haight AR, Henry R, Kotecki B, Mei J, Pearl KB, Tedrow JS, Viswanath SK. Org. Process Res. Dev. 2007; 11: 693
    • 12d McDermott TS, Bhagavatula L, Borchardt TB, Engstrom KM, Gandarilla J, Kotecki BJ, Kruger AW, Rozema MJ, Sheikh AY, Wagaw SH, Wittenberger SJ. Org. Process Res. Dev. 2009; 13: 1145
    • 13a Lwowski W. Azides, Nitrenes: Reactivity, Utility . Scriven EF.V. Academic Press; Orlando: 1984. Chap. 4; 20
    • 13b Sprecher H, Pérez Payán MN, Weber M, Yilmaz G, Wille G. J. Flow Chem. 2012; 2: 20
    • 13c Tudhope SR, Bellamy JA, Ball A, Rajasekar D, Azadi-Ardakani M, Meera HS, Gnanadeepam JM, Saiganesh R, Gibson F, He L, Behrens CH, Underiner G, Marfurt J, Favre N. Org. Process Res. Dev. 2012; 16: 635
    • 13d Grongsaard P, Bulger PG, Wallace DJ, Tan L, Chen Q, Dolman SJ, Nyrop J, Hoerrner RS, Weisel M, Arredondo J, Itoh T, Xie C, Wen X, Zhao D, Muzzio DJ, Bassan EM, Shultz CS. Org. Process Res. Dev. 2012; 16: 1069
  • 16 Vala A, Parmar N, Soni J, Kottori S, Guduru R. Synlett 2021; 32: 2080
  • 17 Ji C, Xu Q, Shi M. Adv. Synth. Catal. 2017; 359: 974
  • 18 N-Phenyl-1H-indole-3-carboxamide (3aa); Typical Procedure KO t Bu (20 mmol) was added in one portion to a stirred solution of 1H-indole (2a; 10 mmol) and 3-phenyl-1,4,2-dioxazol-5-one (1a; 12 mmol) in toluene (20 mL) at r.t., and the mixture was then stirred at 110 °C for 1–2 h until the reaction was complete (TLC). The mixture was cooled to r.t. and H2O (20 mL) was then added. The resulting mixture was extracted with EtOAc (3 × 50 mL), and the extracts were dried (Na2SO4) and then concentrated under reduced pressure. The residue was purified by chromatography [silica gel, hexane–EtOAc (8:2)] to give a pale yellow solid; yield: 58 mg (57%); mp 172–174 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 1.74 (br s, 1 H), 9.71 (br s, 1 H), 8.30 (d, J = 3.0 Hz, 1 H), 8.20 (d, J = 7.9 Hz, 1 H), 7.77 (d, J = 8.0 Hz, 2 H), 7.47 (d, J = 7.9 Hz, 1 H), 7.33 (t, J = 7.7 Hz, 2 H), 7.17 (m, 2 H), 7.04 (t, J = 7.4 Hz, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 163.73, 140.30, 136.69, 129.13, 128.99, 126.90, 123.05, 122.59, 121.56, 121.11, 120.20, 112.41, 110.97. HRMS (ESI): m/z [M + H]+ calcd for C15H13N2O: 237.1028; found: 237.1026.