RSS-Feed abonnieren
DOI: 10.1055/s-0041-1736723
Inhibition of Foxo3 during myogenic differentiation
Introduction
Patients suffering from disease-related (secondary) sarcopenia have been associated with an enhanced level of the transcription factor Foxo3 in skeletal muscle [1] [2] [3].
Sarcopenia is a progressive and generalized muscle disorder characterized by a decline in muscle mass and strength [4]. If left untreated, it can lead to increased falls, fractures [5] [6], mortality [7], reduced quality of life [8], as well as increased hospitalization rates and cost of care [9].
Foxo3 is one of several transcription factors of the highly conserved Forkhead-Box-Protein family [10]. As a downstream target of the PI3K/AKT pathway [11], Foxo3 plays an important role in protein turnover and muscle wasting [12]. Foxo3 therefore could pose to be a potential target of treatment for secondary sarcopenia.
The focus of this study is to reduce the Foxo3-expression in murine myoblasts in vitro and to analyze changes in myogenic differentiation.
Publikationsverlauf
Artikel online veröffentlicht:
04. November 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
-
1 Kneppers et al. Journal of the American Medical Directors
Association 2017 (18) 637.e1–637.e11
-
2 Mercken et al. Aging Cell 2013 (12), 645–651
-
3 Parolo et al. PLoS ONE 2018 (13), e0194225
-
4 Cruz-Jentoft et al. Age and Ageing 2019 (48), 16–31
-
5 Bischoff-Ferrari et al. Osteoporos Int 2015 (10), 10.1007/s00198-015-3194-y
-
6 Schaap et al. The Journals of Gerontology: Series A 2018 (73), 1199–1204
-
7 De Buyser et al. Age Ageing 2016 (45), 603–608
-
8 Rosenberg. J. Nutr. 1997 (127), 990S–991S
-
9 Cawthon et al. The Journals of Gerontology: Series A 2017 (72), 1383–1389
-
10 Hannenhalli et al. Nat Rev Genet 2009 (10), 233–240
-
11 Brunet et al. Cell 1999 (96), 857–868
-
12 Sacheck et al. American Journal of Physiology-Endocrinology and Metabolism
2004 287, E591–E601