Semin intervent Radiol 2021; 38(05): 542-553
DOI: 10.1055/s-0041-1736660
Review Article

Beyond the MAA-Y90 Paradigm: The Evolution of Radioembolization Dosimetry Approaches and Scout Particles

Grace Keane
1   Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
,
Marnix Lam
1   Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
,
Hugo de Jong
1   Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
› Institutsangaben

Abstract

Radioembolization is a well-established treatment for primary and metastatic liver cancer. There is increasing interest in personalized treatment planning supported by dosimetry, as it provides an opportunity to optimize dose delivery to tumor and minimize nontarget deposition, which demonstrably increases the efficacy and safety of this therapy. However, the optimal dosimetry procedure in the radioembolization setting is still evolving; existing data are limited as few trials have prospectively tailored dose based on personalized planning and predominantly semi-empirical methods are used for dose calculation. Since the pretreatment or “scout” procedure forms the basis of dosimetry calculations, an accurate and reliable technique is essential. 99mTc-MAA SPECT constitutes the current accepted standard for pretreatment imaging; however, inconsistent patterns in published data raise the question whether this is the optimal agent. Alternative particles are now being introduced to the market, and early indications suggest use of an identical scout and treatment particle may be superior to the current standard. This review will undertake an evaluation of the increasingly refined dosimetric methods driving radioembolization practices, and a horizon scanning exercise identifying alternative scout particle solutions. Together these constitute a compelling vision for future treatment planning methods that prioritize individualized care.



Publikationsverlauf

Artikel online veröffentlicht:
24. November 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Roosen J, Klaassen NJM, Westlund Gotby LEL. et al. To 1000 Gy and back again: a systematic review on dose-response evaluation in selective internal radiation therapy for primary and secondary liver cancer. [published online ahead of print April 10, 2021] Eur J Nucl Med Mol Imaging 2021; DOI: 10.1007/s00259-021-05340-0.
  • 2 Salem R, Gordon AC, Mouli S. et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology 2016; 151 (06) 1155-1163.e2
  • 3 Salem R, Padia SA, Lam M. et al. Clinical and dosimetric considerations for Y90: recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging 2019; 46 (08) 1695-1704
  • 4 European Council. European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. OJ EU L13 2014; 57: 1-73
  • 5 Kao YH, Tan EH, Ng CE, Goh SW. Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review. Ann Nucl Med 2011; 25 (07) 455-461
  • 6 Giammarile F, Bodei L, Chiesa C. et al; Therapy, Oncology and Dosimetry Committees. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2011; 38 (07) 1393-1406
  • 7 Loevinger R, Budinger T, Watson E. et al. MIRD Primer for Absorbed Dose Calculations, revised edition. New York: Society of Nuclear Medicine; 1991
  • 8 Biocompatibles UK Ltd. Therasphere® Yttrium-90 Glass Microspheres: Package Insert. Farnham UK: Biocompatibles UK Ltd;
  • 9 Dezarn WA, Cessna JT, DeWerd LA. et al; American Association of Physicists in Medicine. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med Phys 2011; 38 (08) 4824-4845
  • 10 Bolch WE, Bouchet LG, Robertson JS. et al; Medical Internal Radiation Dose Committee. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions – radionuclide S values at the voxel level. J Nucl Med 1999; 40 (01) 11S-36S
  • 11 Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med 2006; 47 (07) 1209-1211
  • 12 Lau WY, Leung TW, Ho S. et al. Diagnostic pharmaco-scintigraphy with hepatic intra-arterial technetium-99m macroaggregated albumin in the determination of tumour to non-tumour uptake ratio in hepatocellular carcinoma. Br J Radiol 1994; 67 (794) 136-139
  • 13 Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gérard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 2013; 10 (01) 52-60
  • 14 Dieudonné A, Hobbs RF, Lebtahi R. et al. Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: comparison between dose kernel convolution and direct Monte Carlo methods. J Nucl Med 2013; 54 (02) 236-243
  • 15 Pasciak AS, Erwin WD. Effect of voxel size and computation method on Tc-99m MAA SPECT/CT-based dose estimation for Y-90 microsphere therapy. IEEE Trans Med Imaging 2009; 28 (11) 1754-1758
  • 16 Levillain H, Bagni O, Deroose CM. et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging 2021; 48 (05) 1570-1584
  • 17 Toskich BB, Tabori NE, Lewandowski RJ. Practical yttrium-90 radioembolization dosimetry for the treatment of hepatocellular carcinoma: current Y-90 dosimetry concepts driving radioembolization practice for HCC treatment. Emb. 2021; 20 (04) 43-48
  • 18 Reinders M, Braat A, Lam M. Toxicity and dosimetry in SORAMIC study. J Hepatol 2020; 73 (03) 734-735
  • 19 Sposito C, Mazzaferro V. The SIRveNIB and SARAH trials, radioembolization vs. sorafenib in advanced HCC patients: reasons for a failure, and perspectives for the future. Hepatobiliary Surg Nutr 2018; 7 (06) 487-489
  • 20 Chiesa C, Maccauro M, Romito R. et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging 2011; 55 (02) 168-197
  • 21 Hermann AL, Dieudonné A, Ronot M. et al; SARAH Trial Group. Relationship of tumor radiation-absorbed dose to survival and response in hepatocellular carcinoma treated with transarterial radioembolization with 90Y in the SARAH study. Radiology 2020; 296 (03) 673-684
  • 22 Marnix L. Personalised treatment planning “the future” of radioembolization, ECIO hears, in Y-90 vs. Ho-166 comparison. January 29, 2021. Accessed June 10, 2021 at: https://interventionalnews.com/personalised-treatment-planning-radioembolization
  • 23 Bastiaannet R, Kappadath SC, Kunnen B, Braat AJAT, Lam MGEH, de Jong HWAM. The physics of radioembolization. EJNMMI Phys 2018; 5 (01) 22
  • 24 Salem R, Johnson G, Kim E. Yttrium-90 radioembolization for the treatment of solitary, unresectable hepatocellular carcinoma: the LEGACY study. Hepatology 2021; DOI: 10.1002/hep.31819.
  • 25 Garin E, Tselikas L, Guiu B. et al; DOSISPHERE-01 Study Group. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6 (01) 17-29
  • 26 Wondergem M, Smits ML, Elschot M. et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med 2013; 54 (08) 1294-1301
  • 27 Ilhan H, Goritschan A, Paprottka P. et al. Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors. J Nucl Med 2015; 56 (11) 1654-1660
  • 28 Smits ML, Elschot M, van den Bosch MA. et al. In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J Nucl Med 2013; 54 (12) 2093-2100
  • 29 Lin E, Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT?. J Cardiovasc Comput Tomogr 2009; 3 (06) 403-408
  • 30 Smits MLJ, Dassen MG, Prince JF. et al. The superior predictive value of 166Ho-scout compared with 99mTc-macroaggregated albumin prior to 166Ho-microspheres radioembolization in patients with liver metastases. Eur J Nucl Med Mol Imaging 2020; 47 (04) 798-806
  • 31 Kunnen B, Dietze MMA, Braat AJAT, Lam MGEH, Viergever MA, de Jong HWAM. Feasibility of imaging 90 Y microspheres at diagnostic activity levels for hepatic radioembolization treatment planning. Med Phys 2020; 47 (03) 1105-1114
  • 32 Kunnen B, van der Velden S, Bastiaannet R, Lam MGEH, Viergever MA, de Jong HWAM. Radioembolization lung shunt estimation based on a 90 Y pretreatment procedure: a phantom study. Med Phys 2018; 45 (10) 4744-4753
  • 33 Yue J, Mauxion T, Reyes DK. et al. Comparison of quantitative Y-90 SPECT and non-time-of-flight PET imaging in post-therapy radioembolization of liver cancer. Med Phys 2016; 43 (10) 5779
  • 34 Abraham R, Lewandowski R, Gandhi R. et al. What's New in Y-90? Technical and procedural innovations in Y-90 radioembolization including existing and investigational next-generation technologies. Interv Oncol 2019; 18 (10) 49-60
  • 35 Selwyn RG, Avila-Rodriguez MA, Converse AK. et al. 18F-labeled resin microspheres as surrogates for 90Y resin microspheres used in the treatment of hepatic tumors: a radiolabeling and PET validation study. Phys Med Biol 2007; 52 (24) 7397-7408
  • 36 Avila-Rodriguez MA, Selwyn RG, Hampel JA. et al. Positron-emitting resin microspheres as surrogates of 90Y SIR-Spheres: a radiolabeling and stability study. Nucl Med Biol 2007; 34 (05) 585-590
  • 37 Perk LR, Visser GW, Vosjan MJ. et al. (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005; 46 (11) 1898-1906
  • 38 Lubberink M, Herzog H. Quantitative imaging of 124I and 86Y with PET. Eur J Nucl Med Mol Imaging 2011; 38 (Suppl. 01) S10-S18
  • 39 van der Velden S, Kunnen B, Koppert WJC. et al. A dual-layer detector for simultaneous fluoroscopic and nuclear imaging. Radiology 2019; 290 (03) 833-838
  • 40 Dietze MMA, Kunnen B, van der Velden S. et al. Performance of a dual-layer scanner for hybrid SPECT/CBCT. Phys Med Biol 2019; 64 (10) 105020
  • 41 Ho CL, Chen S, Cheung SK. et al. Radioembolization with 90Y glass microspheres for hepatocellular carcinoma: significance of pretreatment 11C-acetate and 18F-FDG PET/CT and posttreatment 90Y PET/CT in individualized dose prescription. Eur J Nucl Med Mol Imaging 2018; 45 (12) 2110-2121
  • 42 Kappadath SC, Mikell J, Balagopal A, Baladandayuthapani V, Kaseb A, Mahvash A. Hepatocellular carcinoma tumor dose response after 90Y-radioembolization with glass microspheres using 90Y-SPECT/CT-based voxel dosimetry. Int J Radiat Oncol Biol Phys 2018; 102 (02) 451-461
  • 43 Jadoul A, Bernard C, Lovinfosse P. et al. Comparative dosimetry between 99mTc-MAA SPECT/CT and 90Y PET/CT in primary and metastatic liver tumors. Eur J Nucl Med Mol Imaging 2020; 47 (04) 828-837