Semin Respir Crit Care Med 2021; 42(05): 698-705
DOI: 10.1055/s-0041-1733898
Review Article

Optimizing Fluid Resuscitation and Preventing Fluid Overload in Patients with Septic Shock

Chandni Ravi
1   Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
,
Daniel W. Johnson
1   Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
› Author Affiliations

Abstract

Intravenous fluid administration remains an important component in the care of patients with septic shock. A common error in the treatment of septic shock is the use of excessive fluid in an effort to overcome both hypovolemia and vasoplegia. While fluids are necessary to help correct the intravascular depletion, vasopressors should be concomitantly administered to address vasoplegia. Excessive fluid administration is associated with worse outcomes in septic shock, so great care should be taken when deciding how much fluid to give these vulnerable patients. Simple or strict “recipes” which mandate an exact amount of fluid to administer, even when weight based, are not associated with better outcomes and therefore should be avoided. Determining the correct amount of fluid requires the clinician to repeatedly assess and consider multiple variables, including the fluid deficit, organ dysfunction, tolerance of additional fluid, and overall trajectory of the shock state. Dynamic indices, often involving the interaction between the cardiovascular and respiratory systems, appear to be superior to traditional static indices such as central venous pressure for assessing fluid responsiveness. Point-of-care ultrasound offers the bedside clinician a multitude of applications which are useful in determining fluid administration in septic shock. In summary, prevention of fluid overload in septic shock patients is extremely important, and requires the careful attention of the entire critical care team.



Publication History

Article published online:
20 September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 1993; 328 (20) 1471-1477
  • 2 Russell JA, Rush B, Boyd J. Pathophysiology of septic shock. Crit Care Clin 2018; 34 (01) 43-61
  • 3 Marik P, Bellomo R. A rational approach to fluid therapy in sepsis. Br J Anaesth 2016; 116 (03) 339-349
  • 4 Fernández-Sarmiento J, Salazar-Peláez LM, Carcillo JA. The endothelial glycocalyx: a fundamental determinant of vascular permeability in sepsis. Pediatr Crit Care Med 2020; 21 (05) e291-e300
  • 5 Hippensteel JA, Uchimido R, Tyler PD. et al. Intravenous fluid resuscitation is associated with septic endothelial glycocalyx degradation. Crit Care 2019; 23 (01) 259
  • 6 Ueyama H, Kiyonaka S. Predicting the need for fluid therapy - Does fluid responsiveness work?. J Intensive Care 2017; 5: 34
  • 7 Rivers E, Nguyen B, Havstad S. et al; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345 (19) 1368-1377
  • 8 Nguyen HB, Corbett SW, Steele R. et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med 2007; 35 (04) 1105-1112
  • 9 Ferrer R, Artigas A, Levy MM. et al; Edusepsis Study Group. Improvement in process of care and outcome after a multicenter severe sepsis educational program in Spain. JAMA 2008; 299 (19) 2294-2303
  • 10 Dellinger RP, Carlet JM, Masur H. et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med 2004; 30 (04) 536-555
  • 11 Rhodes A, Evans LE, Alhazzani W. et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 2017; 45 (03) 486-552
  • 12 Rhee C, Kalil AC. Toward a more nuanced approach to the early administration of intravenous fluids in patients with sepsis. JAMA Netw Open 2018; 1 (08) e185844
  • 13 Kalil AC, Sun J. Why are clinicians not embracing the results from pivotal clinical trials in severe sepsis? A bayesian analysis. PLoS One 2008; 3 (05) e2291
  • 14 Kalil AC, Johnson DW, Lisco SJ, Sun J. Early goal-directed therapy for sepsis: a novel solution for discordant survival outcomes in clinical trials. Crit Care Med 2017; 45 (04) 607-614
  • 15 Gaieski DF, Mikkelsen ME, Band RA. et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med 2010; 38 (04) 1045-1053
  • 16 MacArthur RD, Miller M, Albertson T. et al. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis 2004; 38 (02) 284-288
  • 17 Kumar A, Roberts D, Wood KE. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34 (06) 1589-1596
  • 18 Puskarich MA, Trzeciak S, Shapiro NI. et al; Emergency Medicine Shock Research Network (EMSHOCKNET). Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit Care Med 2011; 39 (09) 2066-2071
  • 19 Kalil AC, Kellum JA. Is early goal-directed therapy harmful to patients with sepsis and high disease severity?. Crit Care Med 2017; 45 (08) 1265-1267
  • 20 Yealy DM, Kellum JA, Huang DT. et al; ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014; 370 (18) 1683-1693
  • 21 Peake SL, Delaney A, Bailey M. et al; ARISE Investigators, ANZICS Clinical Trials Group. Goal-directed resuscitation for patients with early septic shock. N Engl J Med 2014; 371 (16) 1496-1506
  • 22 Mouncey PR, Osborn TM, Power GS. et al; ProMISe Trial Investigators. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 2015; 372 (14) 1301-1311
  • 23 Malbrain MLNG, Van Regenmortel N, Saugel B. et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care 2018; 8 (01) 66
  • 24 Seymour CW, Gesten F, Prescott HC. et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 2017; 376 (23) 2235-2244
  • 25 Maitland K, Kiguli S, Opoka RO. et al; FEAST Trial Group. Mortality after fluid bolus in African children with severe infection. N Engl J Med 2011; 364 (26) 2483-2495
  • 26 Landesberg G, Gilon D, Meroz Y. et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J 2012; 33 (07) 895-903
  • 27 Sanfilippo F, Corredor C, Fletcher N. et al. Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med 2015; 41 (06) 1004-1013
  • 28 Sakr Y, Rubatto Birri PN, Kotfis K. et al; Intensive Care Over Nations Investigators. Higher fluid balance increases the risk of death from sepsis: results from a large international audit. Crit Care Med 2017; 45 (03) 386-394
  • 29 Messmer AS, Zingg C, Müller M, Gerber JL, Schefold JC, Pfortmueller CA. Fluid overload and mortality in adult critical care patients - a systematic review and meta-analysis of observational studies. Crit Care Med 2020; 48 (12) 1862-1870
  • 30 Kelm DJ, Perrin JT, Cartin-Ceba R, Gajic O, Schenck L, Kennedy CC. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock 2015; 43 (01) 68-73
  • 31 Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 2011; 39 (02) 259-265
  • 32 Marik PE, Byrne L, van Haren F. Fluid resuscitation in sepsis: the great 30 mL per kg hoax. J Thorac Dis 2020; 12 (Suppl. 01) S37-S47
  • 33 Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care 2015; 19: 251
  • 34 Truong TN, Dunn AS, McCardle K. et al. Adherence to fluid resuscitation guidelines and outcomes in patients with septic shock: reassessing the “one-size-fits-all” approach. J Crit Care 2019; 51: 94-98
  • 35 Wardi G, Wali A, Sell R, Malhotra A, Beitler J. 1482: Impact of fluid resuscitation on septic patients with systolic heart failure. Crit Care Med 2016; 44 (12) 446
  • 36 Malbrain ML, Marik PE, Witters I. et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther 2014; 46 (05) 361-380
  • 37 Hjortrup PB, Haase N, Bundgaard H. et al; CLASSIC Trial Group, Scandinavian Critical Care Trials Group. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med 2016; 42 (11) 1695-1705
  • 38 Lindén-Søndersø A, Jungner M, Spångfors M. et al. Survey of non-resuscitation fluids administered during septic shock: a multicenter prospective observational study. Ann Intensive Care 2019; 9 (01) 132
  • 39 Kellum JA, Song M, Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest 2006; 130 (04) 962-967
  • 40 Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 2012; 308 (15) 1566-1572
  • 41 Raghunathan K, Bonavia A, Nathanson BH. et al. Association between initial fluid choice and subsequent in-hospital mortality during the resuscitation of adults with septic shock. Anesthesiology 2015; 123 (06) 1385-1393
  • 42 Winters ME, Sherwin R, Vilke GM, Wardi G. What is the preferred resuscitation fluid for patients with severe sepsis and septic shock?. J Emerg Med 2017; 53 (06) 928-939
  • 43 Semler MW, Self WH, Wanderer JP. et al; SMART Investigators and the Pragmatic Critical Care Research Group. Balanced crystalloids versus saline in critically ill adults. N Engl J Med 2018; 378 (09) 829-839
  • 44 Brunkhorst FM, Engel C, Bloos F. et al; German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008; 358 (02) 125-139
  • 45 Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 2004; 350 (22) 2247-2256
  • 46 Permpikul C, Tongyoo S, Viarasilpa T, Trainarongsakul T, Chakorn T, Udompanturak S. Early Use of Norepinephrine in Septic Shock Resuscitation (CENSER). A randomized trial. Am J Respir Crit Care Med 2019; 199 (09) 1097-1105
  • 47 Roberts RJ, Miano TA, Hammond DA. et al; Observation of VariatiOn in fLUids adMinistEred in shock-CHaracterizAtion of vaSoprEssor Requirements in Shock (VOLUME-CHASERS) Study Group and SCCM Discovery Network. Evaluation of vasopressor exposure and mortality in patients with septic shock. Crit Care Med 2020; 48 (10) 1445-1453
  • 48 Self WH, Semler MW, Bellomo R. et al; CLOVERS Protocol Committee and NHLBI Prevention and Early Treatment of Acute Lung Injury (PETAL) Network Investigators. Liberal versus restrictive intravenous fluid therapy for early septic shock: rationale for a randomized trial. Ann Emerg Med 2018; 72 (04) 457-466
  • 49 Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 2009; 37 (09) 2642-2647
  • 50 Lyu X, Xu Q, Cai G, Yan J, Yan M. [Efficacies of fluid resuscitation as guided by lactate clearance rate and central venous oxygen saturation in patients with septic shock]. Zhonghua Yi Xue Za Zhi 2015; 95 (07) 496-500
  • 51 Tian HH, Han SS, Lv CJ. et al. [The effect of early goal lactate clearance rate on the outcome of septic shock patients with severe pneumonia]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2012; 24 (01) 42-45
  • 52 Yu B, Tian HY, Hu ZJ. et al. [Comparison of the effect of fluid resuscitation as guided either by lactate clearance rate or by central venous oxygen saturation in patients with sepsis]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2013; 25 (10) 578-583
  • 53 Jansen TC, van Bommel J, Schoonderbeek FJ. et al; LACTATE Study Group. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 2010; 182 (06) 752-761
  • 54 Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 2010; 303 (08) 739-746
  • 55 Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care 2014; 18 (05) 503
  • 56 Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Crit Care Med 2018; 46 (06) 997-1000
  • 57 Cecconi M, De Backer D, Antonelli M. et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40 (12) 1795-1815
  • 58 Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med 2016; 42 (03) 324-332
  • 59 Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 2013; 41 (07) 1774-1781
  • 60 Osman D, Ridel C, Ray P. et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 2007; 35 (01) 64-68
  • 61 Pinsky MR, Kellum JA, Bellomo R. Central venous pressure is a stopping rule, not a target of fluid resuscitation. Crit Care Resusc 2014; 16 (04) 245-246
  • 62 Connors Jr AF, Speroff T, Dawson NV. et al; SUPPORT Investigators. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 1996; 276 (11) 889-897
  • 63 Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care 2011; 1 (01) 1
  • 64 Loupec T, Nanadoumgar H, Frasca D. et al. Pleth variability index predicts fluid responsiveness in critically ill patients. Crit Care Med 2011; 39 (02) 294-299
  • 65 Desebbe O, Cannesson M. Using ventilation-induced plethysmographic variations to optimize patient fluid status. Curr Opin Anaesthesiol 2008; 21 (06) 772-778
  • 66 Huang CC, Fu JY, Hu HC. et al. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit Care Med 2008; 36 (10) 2810-2816
  • 67 Airapetian N, Maizel J, Alyamani O. et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients?. Crit Care 2015; 19: 400
  • 68 Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 2004; 30 (09) 1834-1837
  • 69 Barbier C, Loubières Y, Schmit C. et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 2004; 30 (09) 1740-1746
  • 70 Preau S, Bortolotti P, Colling D. et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure. Crit Care Med 2017; 45 (03) e290-e297
  • 71 Bortolotti P, Colling D, Colas V. et al. Respiratory changes of the inferior vena cava diameter predict fluid responsiveness in spontaneously breathing patients with cardiac arrhythmias. Ann Intensive Care 2018; 8 (01) 79
  • 72 Orso D, Paoli I, Piani T, Cilenti FL, Cristiani L, Guglielmo N. Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis. J Intensive Care Med 2020; 35 (04) 354-363
  • 73 Vignon P, Repessé X, Bégot E. et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med 2017; 195 (08) 1022-1032
  • 74 Long E, Duke T, Oakley E, O'Brien A, Sheridan B, Babl FE. Pediatric Research in Emergency Departments International Collaborative (PREDICT). Does respiratory variation of inferior vena cava diameter predict fluid responsiveness in spontaneously ventilating children with sepsis. Emerg Med Australas 2018; 30 (04) 556-563
  • 75 Seif D, Mailhot T, Perera P, Mandavia D. Caval sonography in shock: a noninvasive method for evaluating intravascular volume in critically ill patients. J Ultrasound Med 2012; 31 (12) 1885-1890
  • 76 Cavallaro F, Sandroni C, Marano C. et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med 2010; 36 (09) 1475-1483
  • 77 Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med 2016; 42 (12) 1935-1947
  • 78 Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M. Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med 2007; 33 (07) 1133-1138
  • 79 Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med 2007; 33 (07) 1125-1132
  • 80 Monnet X, Rienzo M, Osman D. et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 2006; 34 (05) 1402-1407
  • 81 Beurton A, Teboul JL, Monnet X. Passive leg raising test in patients with intra-abdominal hypertension: do not throw it. Ann Transl Med 2020; 8 (12) 806
  • 82 Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest 2013; 143 (02) 364-370
  • 83 Ibarra-Estrada MA, López-Pulgarín JA, Mijangos-Méndez JC, Díaz-Gómez JL, Aguirre-Avalos G. Respiratory variation in carotid peak systolic velocity predicts volume responsiveness in mechanically ventilated patients with septic shock: a prospective cohort study. Crit Ultrasound J 2015; 7 (01) 29
  • 84 Lichtenstein D. FALLS-protocol: lung ultrasound in hemodynamic assessment of shock. Heart Lung Vessel 2013; 5 (03) 142-147
  • 85 Theerawit P, Touman N, Sutherasan Y, Kiatboonsri S. Transthoracic ultrasound assessment of B-lines for identifying the increment of extravascular lung water in shock patients requiring fluid resuscitation. Indian J Crit Care Med 2014; 18 (04) 195-199
  • 86 Wang RJ, Katha G, Phiri M. et al. Sonographic B-lines, fluid resuscitation, and hypoxemia in Malawian patients with suspected sepsis. Am J Respir Crit Care Med 2020; 202 (03) 463-466