Semin Musculoskelet Radiol 2021; 25(03): 501-513
DOI: 10.1055/s-0041-1731652
Review Article

3D MRI of the Hand and Wrist: Technical Considerations and Clinical Applications

1   Epsom and St Helier University Hospitals, London, United Kingdom
,
2   NYU Grossman School of Medicine, New York University, New York, New York
,
3   Guy's and St. Thomas' Hospitals NHS Foundation Trust, London, United Kingdom
4   School of Biomedical Engineering and Imaging Sciences, King's College London (KCL), London, United Kingdom
› Institutsangaben

Abstract

In the last few years, major developments have been observed in the field of magnetic resonance imaging (MRI). Advances in both scanner hardware and software technologies have witnessed great leaps, enhancing the diagnostic quality and, therefore, the value of MRI. In musculoskeletal radiology, three-dimensional (3D) MRI has become an integral component of the diagnostic pathway at our institutions. This technique is particularly relevant in patients with hand and wrist symptoms, due to the intricate nature of the anatomical structures and the wide range of differential diagnoses for most presentations. We review the benefits of 3D MRI of the hand and wrist, commonly used pulse sequences, clinical applications, limitations, and future directions. We offer guidance for enhancing the image quality and tips for image interpretation of 3D MRI of the hand and wrist.



Publikationsverlauf

Artikel online veröffentlicht:
21. September 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Fritz J, Guggenberger R, Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques. AJR Am J Roentgenol 2021; 216 (03) 718-733
  • 2 Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol 2019; 23 (03) e68-e81
  • 3 Shahabpour M, Isaac A, De Jonge MC. MRI Wrist and Hand, for Sports Imaging Subcommittee. Horn, Austria: Breitenseher; 2021: 344 pages. First edition published June 2021. ISBN: 978-3-902933-84-3. DOI: 10.30415/9783902933843
  • 4 Isaac A, Dalili D, Dalili D, Weber M-A. State-of-the-art imaging for diagnosis of metastatic bone disease. Radiologe 2020; 60 (Suppl. 01) 1-16
  • 5 Del Grande F, Guggenberger R, Fritz J. Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol 2021; 216 (03) 704-717
  • 6 Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol 2016; 51 (10) 609-617
  • 7 Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction—first experience. Invest Radiol 2016; 51 (06) 400-409
  • 8 Fritz J, Ahlawat S, Fritz B. et al. 10-Min 3D turbo spin echo MRI of the knee in children: arthroscopy-validated accuracy for the diagnosis of internal derangement. J Magn Reson Imaging 2019; 49 (07) e139-e151
  • 9 Dalili D, Isaac A, Fayad LM, Ahlawat S. Routine knee MRI: how common are peripheral nerve abnormalities, and why does it matter?. Skeletal Radiol 2021; 50 (02) 321-332
  • 10 Stehling C, Bachmann R, Langer M, Nassenstein I, Heindel W, Vieth V. High-resolution magnetic resonance imaging of triangular fibrocartilage complex lesions in acute wrist trauma: image quality at different field strengths. J Comput Assist Tomogr 2009; 33 (04) 579-583
  • 11 Chang AL, Yu HJ, von Borstel D. et al. Advanced imaging techniques of the wrist. AJR Am J Roentgenol 2017; 209 (03) 497-510
  • 12 Nöbauer-Huhmann IM, Pretterklieber M, Erhart J. et al. Anatomy and variants of the triangular fibrocartilage complex and its MR appearance at 3 and 7T. Semin Musculoskelet Radiol 2012; 16 (02) 93-103
  • 13 Rehnitz C, Klaan B, von Stillfried F. et al. Comparison of modern 3D and 2D MR imaging sequences of the wrist at 3 Tesla. Röfo Fortschr Geb Röntgenstr Nuklearmed 2016; 188 (08) 753-762
  • 14 Pfirrmann CW, Theumann NH, Chung CB, Botte MJ, Trudell DJ, Resnick D. What happens to the triangular fibrocartilage complex during pronation and supination of the forearm? Analysis of its morphology and diagnostic assessment with MR arthrography. Skeletal Radiol 2001; 30 (12) 677-685
  • 15 Buck FM, Nico MAC, Gheno R, Haghighi P, Trudell DJ, Resnick D. Morphology of the distal radioulnar joint: cadaveric study with MRI and MR arthrography with the forearm in neutral position, pronation, and supination. AJR Am J Roentgenol 2010; 194 (02) W202–W207
  • 16 Meister DW, Hearns KA, Carlson MG. Dorsal scaphoid subluxation on sagittal magnetic resonance imaging as a marker for scapholunate ligament tear. J Hand Surg Am 2017; 42 (09) 717-721
  • 17 Boutin RD, Buonocore MH, Immerman I. et al. Real-time magnetic resonance imaging (MRI) during active wrist motion—initial observations. PLoS One 2013; 8 (12) e84004
  • 18 Luijkx T, Buckens CF, van Seeters T, Pegge SA, Maas M. ECU tendon subluxation: a nonspecific MRI finding occurring in all wrist positions irrespective of ulnar-sided symptoms?. Eur J Radiol 2019; 116 (116) 192-197
  • 19 Zink JV, Souteyrand P, Guis S. et al. Standardized quantitative measurements of wrist cartilage in healthy humans using 3T magnetic resonance imaging. World J Orthop 2015; 6 (08) 641-648
  • 20 Østergaard M, Edmonds J, McQueen F. et al. An introduction to the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Ann Rheum Dis 2005; 64 (Suppl. 01) i3-i7
  • 21 Østergaard M, Peterfy C, Conaghan P. et al. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 2003; 30 (06) 1385-1386
  • 22 Østergaard M, Bøyesen P, Eshed I. et al. Development and preliminary validation of a magnetic resonance imaging joint space narrowing score for use in rheumatoid arthritis: potential adjunct to the OMERACT RA MRI scoring system. J Rheumatol 2011; 38 (09) 2045-2050
  • 23 Dallaudière B, Moreau-Durieux MH, Larbi A. et al. Effects of axial traction during direct MR-arthrography of the wrist in sports injuries. J Belg Soc Radiol 2016; 100 (01) 72
  • 24 Del Grande F, Delcogliano M, Guglielmi R. et al. Fully automated 10-minute 3D CAIPIRINHA SPACE TSE MRI of the knee in adults: a multicenter, multireader, multifield-strength validation study. Invest Radiol 2018; 53 (11) 689-697
  • 25 Fritz B, Bensler S, Thawait GK, Raithel E, Stern SE, Fritz J. CAIPIRINHA-accelerated 10-min 3D TSE MRI of the ankle for the diagnosis of painful ankle conditions: performance evaluation in 70 patients. Eur Radiol 2019; 29 (02) 609-619
  • 26 Kalia V, Fritz B, Johnson R, Gilson WD, Raithel E, Fritz J. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons. Eur Radiol 2017; 27 (09) 3652-3661
  • 27 Leclerc X, Nicol L, Gauvrit JY, Le Thuc V, Leys D, Pruvo JP. Contrast-enhanced MR angiography of supraaortic vessels: the effect of voxel size on image quality. AJNR Am J Neuroradiol 2000; 21 (06) 1021-1027
  • 28 Pruitt AA, Jin N, Liu Y, Simonetti OP, Ahmad R. A method to correct background phase offset for phase-contrast MRI in the presence of steady flow and spatial wrap-around artifact. Magn Reson Med 2019; 81 (04) 2424-2438
  • 29 Le M, Fessler JA. Efficient, convergent SENSE MRI reconstruction for nonperiodic boundary conditions via tridiagonal solvers. IEEE Trans Comput Imaging 2017; 3 (01) 11-21
  • 30 Matakos A, Ramani S, Fessler JA. Accelerated edge-preserving image restoration without boundary artifacts. IEEE Trans Image Process 2013; 22 (05) 2019-2029
  • 31 Malamateniou C, Malik SJ, Counsell SJ. et al. Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 2013; 34 (06) 1124-1136
  • 32 Zaitsev M, Dold C, Sakas G, Hennig J, Speck O. Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 2006; 31 (03) 1038-1050
  • 33 Havsteen I, Ohlhues A, Madsen KH, Nybing JD, Christensen H, Christensen A. Are movement artifacts in magnetic resonance imaging a real problem?-a narrative review. Front Neurol 2017; 8: 1-8
  • 34 Del Grande F, Rashidi A, Luna R. et al. Five-minute five-sequence knee MRI using combined simultaneous multislice and parallel imaging acceleration: comparison with 10-minute parallel imaging knee MRI. Radiology 2021; 299 (03) 635-646
  • 35 Huang SY, Seethamraju RT, Patel P, Hahn PF, Kirsch JE, Guimaraes AR. Body MR imaging: artifacts, k-space, and solutions. Radiographics 2015; 35 (05) 1439-1460
  • 36 Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiographics 2014; 34 (04) E106-E132
  • 37 Fritz J, Lurie B, Potter HG. MR imaging of knee arthroplasty implants. Radiographics 2015; 35 (05) 1483-1501
  • 38 Fritz J, Ahlawat S, Demehri S. et al. Compressed Sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol 2016; 51 (10) 666-676
  • 39 Fritz J, Fritz B, Thawait GK. et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC. Skeletal Radiol 2016; 45 (10) 1345-1356
  • 40 Del Grande F, Santini F, Herzka DA. et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014; 34 (01) 217-233
  • 41 Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice encoding for metal artifact correction in MRI. Magn Reson Med 2009; 62 (01) 66-76
  • 42 Ma L, Otikovs M, Cousin SF, Liberman G, Bao Q, Frydman L. Simultaneous multi-banding and multi-echo phase encoding for the accelerated acquisition of high-resolution volumetric diffusivity maps by spatiotemporally encoded MRI. Magn Reson Imaging 2021; 79 (79) 130-139
  • 43 Hou Z. A review on MR image intensity inhomogeneity correction. Int J Biomed Imaging 2006; 2006 (01) 49515
  • 44 Vickers D, Nielsen G. Madelung deformity: surgical prophylaxis (physiolysis) during the late growth period by resection of the dyschondrosteosis lesion. J Hand Surg Br 1992; 17 (04) 401-407
  • 45 Del Core M, Beckwith T, Phillips L, Ezaki M, Stutz C, Oishi SN. Long-term outcomes following Vickers ligament release and growth modulation for the treatment of Madelung deformity. J Pediatr Orthop 2020; 40 (04) e306-e311
  • 46 Friedrich RE, Hagel C. Painful Vater-Pacini neuroma of the digit in neurofibromatosis type 1. GMS Interdiscip Plast Reconstr Surg DGPW 2019; 8: Doc03
  • 47 Germann C, Sutter R, Nanz D. Novel observations of Pacinian corpuscle distribution in the hands and feet based on high-resolution 7-T MRI in healthy volunteers. Skeletal Radiol 2021; 50 (06) 1249-1255
  • 48 Hojreh A, Gamper J, Schmook MT. et al. Hand MRI and the Greulich-Pyle atlas in skeletal age estimation in adolescents. Skeletal Radiol 2018; 47 (07) 963-971
  • 49 Widek T, Genet P, Ehammer T, Schwark T, Urschler M, Scheurer E. Bone age estimation with the Greulich-Pyle atlas using 3T MR images of hand and wrist. Forensic Sci Int 2021; 319: 110654
  • 50 Tang X, Lu Y, Pang M. et al. An abbreviated scale for the assessment of skeletal bone age using radiographs of the knee. Orthopedics 2018; 41 (05) e676-e680
  • 51 Martín Noguerol T, Luna Alcalá A, Beltrán LS, Gómez Cabrera M, Broncano Cabrero J, Vilanova JC. Advanced MR imaging techniques for differentiation of neuropathic arthropathy and osteomyelitis in the diabetic foot. Radiographics 2017; 37 (04) 1161-1180
  • 52 Hasseli R, Mueller-Ladner U, Hoyer BF. et al. Older age, comorbidity, glucocorticoid use and disease activity are risk factors for COVID-19 hospitalisation in patients with inflammatory rheumatic and musculoskeletal diseases. RMD Open 2021; 7 (01) 1-8
  • 53 Rashidi A, Haj-Mirzaian A, Dalili D, Fritz B, Fritz J. Evidence-based use of clinical examination, ultrasonography, and MRI for diagnosing ulnar collateral ligament tears of the metacarpophalangeal joint of the thumb: systematic review and meta-analysis. Eur Radiol 2021 January 18 (Epub ahead of print)
  • 54 Hafezi-Nejad N, Carrino JA, Eng J. et al. Scapholunate interosseous ligament tears: diagnostic performance of 1.5 T, 3 T MRI, and MR arthrography—a systematic review and meta-analysis. Acad Radiol 2016; 23 (09) 1091-1103
  • 55 Lee YH, Choi YR, Kim S, Song HT, Suh JS. Intrinsic ligament and triangular fibrocartilage complex (TFCC) tears of the wrist: comparison of isovolumetric 3D-THRIVE sequence MR arthrography and conventional MR image at 3 T. Magn Reson Imaging 2013; 31 (02) 221-226
  • 56 von Borstel DV, Wang M, Small K, Nozaki T, Yoshioka H. High-resolution 3T MR imaging of the triangular fibrocartilage complex. Magn Reson Med Sci 2017; 16 (01) 3-15
  • 57 Zhan H, Bai R, Qian Z, Yang Y, Zhang H, Yin Y. Traumatic injury of the triangular fibrocartilage complex (TFCC)—a refinement to the Palmer classification by using high-resolution 3-T MRI. Skeletal Radiol 2020; 49 (10) 1567-1579
  • 58 Potter HG, Asnis-Ernberg L, Weiland AJ, Hotchkiss RN, Peterson MGE, McCormack RR. The utility of high-resolution magnetic resonance imaging in the evaluation of the triangular fibrocartilage complex of the wrist. J Bone Joint Surg Am 1997; 79 (11) 1675-1684
  • 59 Haims AH, Schweitzer ME, Morrison WB. et al. Limitations of MR imaging in the diagnosis of peripheral tears of the triangular fibrocartilage of the wrist. AJR Am J Roentgenol 2002; 178 (02) 419-422
  • 60 Cerny M, Marlois R, Theumann N. et al. 3-T direct MR arthrography of the wrist: value of finger trap distraction to assess intrinsic ligament and triangular fibrocartilage complex tears. Eur J Radiol 2013; 82 (10) e582-e589
  • 61 Ng AWH, Griffith JF, Fung CSY. et al. MR imaging of the traumatic triangular fibrocartilaginous complex tear. Quant Imaging Med Surg 2017; 7 (04) 443-460
  • 62 Gulati A, Wadhwa V, Ashikyan O, Cerezal L, Chhabra A. Current perspectives in conventional and advanced imaging of the distal radioulnar joint dysfunction: review for the musculoskeletal radiologist. Skeletal Radiol 2019; 48 (03) 331-348
  • 63 Luna R, Fritz J, Del Grande F, Ahlawat S, Fayad LM. Determination of skeletal tumor extent: is an isotropic T1-weighted 3D sequence adequate?. Eur Radiol 2021; 31 (05) 3138-3146
  • 64 Ahlawat S, Fritz J, Morris CD, Fayad LM. Magnetic resonance imaging biomarkers in musculoskeletal soft tissue tumors: review of conventional features and focus on nonmorphologic imaging. J Magn Reson Imaging 2019; 50 (01) 11-27
  • 65 Chhabra A, Andreisek G, Soldatos T. et al. MR neurography: past, present, and future. AJR Am J Roentgenol 2011; 197 (03) 583-591
  • 66 Naghibi H, Soroush H, Faeghi F, Shakiba M, Farhoud AR, Hashemi H. Comparison of quantitative assessment of BLADE and isotropic three-dimensional fast spin echo cube (3D T2 SPACE) sequences with conventional protocols of wrist joint at 3 tesla magnetic resonance imaging. Iran J Radiol 2017;14(01):
  • 67 Rooke T, Stanson A. Vascular diseases of the upper limb. In: Young JR, Graor RA, Olin JW, Bartholomew JR. eds. Peripheral Vascular Diseases. St. Louis, MO: Mosby; 1991: 651-667
  • 68 Winterer JT, Scheffler K, Paul G. et al. Optimization of contrast-enhanced MR angiography of the hands with a timing bolus and elliptically reordered 3D pulse sequence. J Comput Assist Tomogr 2000; 24 (06) 903-908
  • 69 Gluecker TM, Bongartz G, Ledermann HP, Bilecen D. MR angiography of the hand with subsystolic cuff-compression optimization of injection parameters. AJR Am J Roentgenol 2006; 187 (04) 905-910
  • 70 Notohamiprodjo M, Glaser C, Horng A. et al. Dynamic 3D-MR-angiography for assessing rheumatoid disease of the hand—a feasibility study. Eur J Radiol 2012; 81 (05) 951-956
  • 71 Winterer JT, Blanke P, Schaefer A, Pache G, Langer M, Markl M. Bilateral contrast-enhanced MR angiography of the hand: diagnostic image quality of accelerated MRI using echo sharing with interleaved stochastic trajectories (TWIST). Eur Radiol 2011; 21 (05) 1026-1033
  • 72 Michelotti BF, Mathews A, Chung KC. Appropriateness of the use of magnetic resonance imaging in the diagnosis and treatment of wrist soft tissue injury. Plast Reconstr Surg 2018; 141 (02) 410-419
  • 73 Khodarahmi I, Fishman EK, Fritz J. Dedicated CT and MRI techniques for the evaluation of the postoperative knee. Semin Musculoskelet Radiol 2018; 22 (04) 444-456
  • 74 Filli L, Jud L, Luechinger R. et al. Material-dependent implant artifact reduction using SEMAC-VAT and MAVRIC: a prospective MRI phantom study. Invest Radiol 2017; 52 (06) 381-387
  • 75 Brauck K, Maderwald S, Vogt FM, Zenge M, Barkhausen J, Herborn CU. Time-resolved contrast-enhanced magnetic resonance angiography of the hand with parallel imaging and view sharing: initial experience. Eur Radiol 2007; 17 (01) 183-192
  • 76 Abrar DB, Schleich C, Frenken M. et al. DGEMRIC in the assessment of pre-morphological cartilage degeneration in rheumatic disease: rheumatoid arthritis vs. psoriatic arthritis. Diagnostics (Basel) 2021; 11 (02) 147
  • 77 Akai T, Taniguchi D, Oda R. et al. Prediction of radiographic progression in synovitis-positive joints on maximum intensity projection of magnetic resonance imaging in rheumatoid arthritis. Clin Rheumatol 2016; 35 (04) 873-878
  • 78 Verkuil F, van Gulik EC, Nusman CM. et al. Exploring contrast-enhanced MRI findings of the clinically non-inflamed symptomatic pediatric wrist. Pediatr Radiol 2020; 50 (10) 1387-1396
  • 79 Thakkar R, Flammang A, Chhabra A, Padua A, Carrino JA. 3T MR imaging of cartilage using 3D dual echo steady state (DESS). MAGNETOM Flash. 2011: 33-36 . Last accessed 26.06.2021. at: https://mriquestions.com/uploads/3/4/5/7/34572113/3t_mr_imaging_of_cartilage_using_3d_dual_echo_steady_state-00011808.pdf
  • 80 Li X, Liu X, Du X, Ye Z. Diffusion-weighted MR imaging for assessing synovitis of wrist and hand in patients with rheumatoid arthritis: a feasibility study. Magn Reson Imaging 2014; 32 (04) 350-353
  • 81 Partridge SC, Singer L, Sun R. et al. Diffusion-weighted MRI: influence of intravoxel fat signal and breast density on breast tumor conspicuity and apparent diffusion coefficient measurements. Magn Reson Imaging 2011; 29 (09) 1215-1221
  • 82 Zhang L, Wang Q, Wu X. et al. Baseline bone marrow ADC value of diffusion-weighted MRI: a potential independent predictor for progression and death in patients with newly diagnosed multiple myeloma. Eur Radiol 2021; 31 (04) 1843-1852
  • 83 Holzgrefe RE, Wagner ER, Singer AD, Daly CA. Imaging of the peripheral nerve: concepts and future direction of magnetic resonance neurography and ultrasound. J Hand Surg Am 2019; 44 (12) 1066-1079
  • 84 Pham M, Bäumer T, Bendszus M. Peripheral nerves and plexus: imaging by MR-neurography and high-resolution ultrasound. Curr Opin Neurol 2014; 27 (04) 370-379
  • 85 Zhou Y, Narayana PA, Kumaravel M, Athar P, Patel VS, Sheikh KA. High resolution diffusion tensor imaging of human nerves in forearm. J Magn Reson Imaging 2014; 39 (06) 1374-1383
  • 86 Ding WQ, Zhou XJ, Tang JB, Gu JH, Jin DS. Three-dimensional display of peripheral nerves in the wrist region based on MR diffusion tensor imaging and maximum intensity projection post-processing. Eur J Radiol 2015; 84 (06) 1116-1127
  • 87 Zhang Q, Eagleson R, Peters TM. Volume visualization: a technical overview with a focus on medical applications. J Digit Imaging 2011; 24 (04) 640-664
  • 88 Xanthopoulos E, Hutchinson CE, Adams JE. et al. Improved wrist pannus volume measurement from contrast-enhanced MRI in rheumatoid arthritis using shuffle transform. Magn Reson Imaging 2007; 25 (01) 110-116
  • 89 Taniguchi D, Tokunaga D, Oda R. et al. Maximum intensity projection with magnetic resonance imaging for evaluating synovitis of the hand in rheumatoid arthritis: comparison with clinical and ultrasound findings. Clin Rheumatol 2014; 33 (07) 911-917
  • 90 Pavone P, Luccichenti G, Cademartiri F. From maximum intensity projection to volume rendering. Semin Ultrasound CT MR 2001; 22 (05) 413-419