CC BY 4.0 · Eur J Dent 2021; 15(04): 782-787
DOI: 10.1055/s-0041-1731589
Review Article

A Review on the Application of Silver Nanoparticles in Oral and Maxillofacial Surgery

1   International College of Dentistry, Walailak University, Bangkok, Thailand
,
1   International College of Dentistry, Walailak University, Bangkok, Thailand
,
1   International College of Dentistry, Walailak University, Bangkok, Thailand
,
1   International College of Dentistry, Walailak University, Bangkok, Thailand
,
1   International College of Dentistry, Walailak University, Bangkok, Thailand
,
1   International College of Dentistry, Walailak University, Bangkok, Thailand
› Author Affiliations
Funding None.

Abstract

Silver nanoparticles (AgNPs) have been taken advantage of in dentistry because of their good antibacterial resistance and self-sustaining potential. However, in oral and maxillofacial surgery and implantology, there is a lesser amount of evidence. The few pieces of evidence need to be accentuated for possible amplification of its use in the dental setting. AgNPs in oral and maxillofacial surgery can be used in wound healing, bone healing, extractions, guided tissue regeneration, apical surgeries, oral cancer, and dental implants. This review aims to feature the utilization and application of AgNPs in oral and maxillofacial surgery and implant dentistry, emphasizing its need for potential future development in clinical settings.



Publication History

Article published online:
24 August 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Lansdown ABG. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 2006; 33: 17-34
  • 2 Becker RO, Spadaro JA. Treatment of orthopaedic infections with electrically generated silver ions. A preliminary report. J Bone Joint Surg Am 1978; 60 (07) 871-881
  • 3 Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27 (01) 76-83
  • 4 Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17 (09) E1534
  • 5 Takamiya AS, Monteiro DR, Gorup LF. et al Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Mater Sci Eng C 2021; 118: 111341
  • 6 Nam KY. In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J Adv Prosthodont 2011; 3 (01) 20-24
  • 7 Moghadas L, Shahmoradi M, Narimani T. Antimicrobial activity of a new nanobased endodontic irrigation solution: in vitro study. Dent Hypotheses 2012; 3 (04) 142-146
  • 8 Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod 2014; 40 (02) 285-290
  • 9 Javidi M, Afkhami F, Zarei M, Ghazvini K, Rajabi O. Efficacy of a combined nanoparticulate/calcium hydroxide root canal medication on elimination of Enterococcus faecalis. Aust Endod J 2014; 40 (02) 61-65
  • 10 Shantiaee Y, Maziar F, Dianat O, Mahjour F. Comparing microleakage in root canals obturated with nanosilver coated gutta-percha to standard gutta-percha by two different methods. Iran Endod J 2011; 6 (04) 140-145
  • 11 Durner J, Stojanovic M, Urcan E, Hickel R, Reichl FX. Influence of silver nano-particles on monomer elution from light-cured composites. Dent Mater 2011; 27 (07) 631-636
  • 12 das Neves PB, Agnelli JA, Kurachi C, de Souza CW. Addition of silver nanoparticles to composite resin: effect on physical and bactericidal properties in vitro. Braz Dent J 2014; 25 (02) 141-145
  • 13 Chen S, Yang J, Jia YG, Lu B, Ren L. A study of 3D-printable reinforced composite resin: PMMA modified with silver nanoparticles loaded cellulose nanocrystal. Materials (Basel) 2018; 11 (12) E2444
  • 14 Carlson C, Hussain SM, Schrand AM. et al Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 2008; 112 (43) 13608-13619
  • 15 Morones JR, Elechiguerra JL, Camacho A. et al The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16 (10) 2346-2353
  • 16 Roco MC. Nanoscale science and engineering education activities in the United States (2001-2002). J Nanopart Res 2002; 4 (03) 271-274
  • 17 Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 2020; 15: 2555-2562
  • 18 Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 2013; 113 (07) 4708-4754
  • 19 Bapat RA, Chaubal TV, Joshi CP. et al An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C 2018; 91 (91) 881-898
  • 20 Zbuchea A, Chelmuş C, Teodorescu E, Milicescu Ş. Recent advances and perspectives of silver nanotechnology in surgery and dentistry. Asian J Biotechnol Genet Engineering 2020; 3 (02) 37-45
  • 21 Lansdown AB. Silver. I: Its antibacterial properties and mechanism of action. J Wound Care 2002; 11 (04) 125-130
  • 22 Hwang ET, Lee JH, Chae YJ. et al Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 2008; 4 (06) 746-750
  • 23 Zhang J, Xu Q, Huang C, Mo A, Li J, Zuo Y. Biological properties of an anti-bacterial membrane for guided bone regeneration: an experimental study in rats. Clin Oral Implants Res 2010; 21 (03) 321-327
  • 24 García-Contreras R, Argueta-Figueroa L, Mejía-Rubalcava C. et al Perspectives for the use of silver nanoparticles in dental practice. Int Dent J 2011; 61 (06) 297-301
  • 25 Goggin R, Jardeleza C, Wormald PJ, Vreugde S. Colloidal silver: a novel treatment for Staphylococcus aureus biofilms?. Int Forum Allergy Rhinol 2014; 4 (03) 171-175
  • 26 Barras F, Aussel L, Ezraty B. Silver and antibiotic, new facts to an old story. Antibiotics (Basel) 2018; 7 (03) 79
  • 27 Ge J, Yang C, Zheng JW, He DM, Zheng LY, Hu YK. Four osteotomy methods with piezosurgery to remove complicated mandibular third molars: a retrospective study. J Oral Maxillofac Surg 2014; 72 (11) 2126-2133
  • 28 Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials (Basel) 2018; 8 (09) 1-25
  • 29 Cheng YJ, Zeiger DN, Howarter JA. et al In situ formation of silver nanoparticles in photocrosslinking polymers. J Biomed Mater Res B Appl Biomater 2011; 97 (01) 124-131
  • 30 Talapko J, Matijević T, Juzbašić M, Antolović-Požgain A, Škrlec I. Antibacterial activity of silver and its application in dentistry, cardiology and dermatology. Microorganisms 2020; 8 (09) 1-13
  • 31 de Lima R, Seabra AB, Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 2012; 32 (11) 867-879
  • 32 Gurunathan S, Park JH, Han JW, Kim JH. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomedicine 2015; 10 (July) 4203-4222
  • 33 Firdhouse MJ, Lalitha P. Biosynthesis of silver nanoparticles and its applications. J Nanotechnol 2015; (e-pub ahead of print): doi: https://doi.org/ DOI: 10.1155/2015/829526.
  • 34 Shehzad A, Qureshi M, Jabeen S. et al Synthesis, characterization and antibacterial activity of silver nanoparticles using Rhazya stricta. PeerJ 2018; 6 (12) e6086
  • 35 Gurunathan S, Kalishwaralal K, Vaidyanathan R. et al Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 2009; 74 (01) 328-335
  • 36 Makarov VV, Love AJ, Sinitsyna OV. et al “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 2014; 6 (01) 35-44
  • 37 Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem 2011; 13: 2638-2650
  • 38 Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain Chem& Eng 2014; 2 (07) 1717-1723
  • 39 Ovais M, Ahmad I, Khalil AT. et al Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects. Appl Microbiol Biotechnol 2018; 102 (10) 4305-4318
  • 40 Hashim PW, Ferneini AM. Wound healing. In: Charles LC, Mohammad B, eds. Complications in Maxillofacial Cosmetic Surgery: Strategies for Prevention and Management Springer 2017: 37-45
  • 41 Singh S, Young A, McNaught CE. The physiology of wound healing. Surgery 2017; 35 (09) 473-477
  • 42 Gunasekaran T, Nigusse T, Dhanaraju MD. Silver nanoparticles as real topical bullets for wound healing. J Am Coll Clin Wound Spec 2012; 3 (04) 82-96
  • 43 Tian J, Wong KK, Ho CM. et al Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2007; 2 (01) 129-136
  • 44 Lansdown AB, Jensen K, Jensen MQ. Contreet Foam and Contreet Hydrocolloid: an insight into two new silver-containing dressings. J Wound Care 2003; 12 (06) 205-210
  • 45 Prasetyo BC, Sugiharti RJ, Mahendra I. et al Evaluation of silver nanoparticles addition in periodontal dressing for wound tissue healing by 99mTc-ciprofloxacin. J Young Pharm 2018; 11 (01) 17-20
  • 46 Cai YH, Lu CS. [A clinical study of gelatamp colloidal silver gelatin sponge on preventing the complication of teeth extraction]. Hua Xi Kou Qiang Yi Xue Za Zhi 2008; 26 (05) 519-521
  • 47 Ragab H, Melek L. Comparison of two hemostatic agents in patients receiving anticoagulants without altering medication dosage. Egypt Dent J 2019; 65 (04) 3315-3321
  • 48 Piry P, Esmaeeli A, Mahdipour A, Asayesh H. The effect of using Gelatamp on pain and gingival bleeding after tooth extraction: a randomize clinical trial. Qom Univ Med Sci J 2018; 12 (08) 10-18
  • 49 Nitzan DW. On the genesis of “dry socket”.. J Oral Maxillofac Surg 1983; 41 (11) 706-710
  • 50 Maani S, Saleh M, Melek L, Sadaka M. Evaluation of colloidal silver gelatin sponge (Gelatamp) in patients receiving anticoagulant after tooth extraction (clinical study). Alex Dent J 2015; 40 (01) 101-106
  • 51 Wang YZ, Guan QL, Li YX. et al [Use of “gelatamp” colloidal silver gelatin sponge to prevent dry socket after extracting mandibular impacted teeth]. Shanghai Kou Qiang Yi Xue 2013; 22 (01) 108-110
  • 52 Dong Y, Liu W, Lei Y. et al Effect of gelatin sponge with colloid silver on bone healing in infected cranial defects. Mater Sci Eng C 2017; 70 (Pt 1) 371-377
  • 53 Sivolella S, Stellini E, Brunello G. et al Silver nanoparticles in alveolar bone surgery devices. J Nanomater 2012; 2012: 13-17
  • 54 Yang W, Ouyang XY. Radiographic and clinical outcomes of ridge augmentation in molar extraction sockets with severe bone wall defect. Chin J Dent Res 2015; 18 (04) 221-228 doi: DOI: 10.3290/j.cjdr.a35146.
  • 55 Lee D, Lee SJ, Moon JH. et al Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. J Ind Eng Chem 2018; 66: 196-202
  • 56 Shao J, Yu N, Kolwijck E. et al Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes. Nanomedicine (Lond) 2017; 12 (22) 2771-2785
  • 57 Khorshidi H, Haddadi P, Raoofi S, Badiee P, Dehghani Nazhvani A. Does adding silver nanoparticles to leukocyte- and platelet-rich fibrin improve its properties?. BioMed Res Int 2018; 2018: 8515829
  • 58 Mena-Álvarez J, Quispe-López N, Zubizarreta-Macho Á, Rico-Romano C, Rodero-Villanueva R, Fernández-Aceñero MJ. Histological analysis of different local haemostatic agents used for periapical surgery: an experimental study with Sprague-Dawley rats. Aust Endod J 2019; 45 (03) 357-364
  • 59 Monteiro DR, Gorup LF, Takamiya AS. Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 2009; 34 (02) 103-110
  • 60 Hendriks JGE, van Horn JR, van der Mei HC, Busscher HJ. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 2004; 25 (03) 545-556
  • 61 Chen W, Liu Y, Courtney HS. et al In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006; 27 (32) 5512-5517
  • 62 Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface modifications and their effects on titanium dental implants. BioMed Res Int 2015; 2015: 791725
  • 63 Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater 2009; 91 (01) 470-480
  • 64 Flores CY, Diaz C, Rubert A. et al Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. J Colloid Interface Sci 2010; 350 (02) 402-408
  • 65 Lu X, Zhang B, Wang Y. et al Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J R Soc Interface 2011; 8 (57) 529-539
  • 66 Zhong X, Song Y, Yang P. et al Titanium surface priming with phase-transited lysozyme to establish a silver nanoparticle-loaded chitosan/hyaluronic acid antibacterial multilayer via layer-by-layer self-assembly. PLoS One 2016; 11 (01) e0146957
  • 67 Massa MA, Covarrubias C, Bittner M. et al Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater Sci Eng C 2014; 45: 146-153
  • 68 Boutinguiza M, Fernández-Arias M, del Val J. et al Synthesis and deposition of silver nanoparticles on cp Ti by laser ablation in open air for antibacterial effect in dental implants. Mater Lett 2018; 231: 126-129
  • 69 Noronha VT, Paula AJ, Durán G. et al Silver nanoparticles in dentistry. Dent Mater 2017; 33 (10) 1110-1126
  • 70 Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 2015; 20 (05) 595-601
  • 71 Zhang T, Wang L, Chen Q, Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med J 2014; 55 (02) 283-291
  • 72 Dziedzic A, Kubina R, Bułdak RJ, Skonieczna M, Cholewa K. Silver nanoparticles exhibit the dose-dependent anti-proliferative effect against human squamous carcinoma cells attenuated in the presence of berberine. Molecules 2016; 21 (03) 365
  • 73 Rosarin FS, Arulmozhi V, Nagarajan S, Mirunalini S. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pac J Trop Med 2013; 6 (01) 1-10
  • 74 Satapathy SR, Siddharth S, Das D, Nayak A, Kundu CN. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: implication of base excision repair cascade. Mol Pharm 2015; 12 (11) 4011-4025