Subscribe to RSS
DOI: 10.1055/s-0041-1725064
Endothelial Heparan Sulfate Proteoglycans in Sepsis: The Role of the Glycocalyx
Abstract
There is increasing recognition of the importance of the endothelial glycocalyx and its in vivo manifestation, the endothelial surface layer, in vascular homeostasis. Heparan sulfate proteoglycans (HSPGs) are a major structural constituent of the endothelial glycocalyx and serve to regulate vascular permeability, microcirculatory tone, leukocyte and platelet adhesion, and hemostasis. During sepsis, endothelial HSPGs are shed through the induction of “sheddases” such as heparanase and matrix metalloproteinases, leading to loss of glycocalyx integrity and consequent vascular dysfunction. Less well recognized is that glycocalyx degradation releases HSPG fragments into the circulation, which can shape the systemic consequences of sepsis. In this review, we will discuss (1) the normal, homeostatic functions of HSPGs within the endothelial glycocalyx, (2) the pathological changes in HSPGs during sepsis and their consequences on the local vascular bed, and (3) the systemic consequences of HSPG degradation. In doing so, we will identify potential therapeutic targets to improve vascular function during sepsis as well as highlight key areas of uncertainty that require further mechanistic investigation.
Publication History
Article published online:
01 April 2021
© 2021. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Marsh G, Waugh RE. Quantifying the mechanical properties of the endothelial glycocalyx with atomic force microscopy. J Vis Exp 2013; (72) e50163
- 2 Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007; 9: 121-167
- 3 Danielli JF. Capillary permeability and oedema in the perfused frog. J Physiol 1940; 98 (01) 109-129
- 4 Chambers R, Zweifach BW. Intercellular cement and capillary permeability. Physiol Rev 1947; 27 (03) 436-463
- 5 Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 1966; 25 (06) 1773-1783
- 6 Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion molecules: master controllers of the circulatory system. Compr Physiol 2016; 6 (02) 945-973
- 7 Ebong EE, Macaluso FP, Spray DC, Tarbell JM. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 2011; 31 (08) 1908-1915
- 8 Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 1996; 79 (03) 581-589
- 9 Megens RT, Reitsma S, Schiffers PH. et al. Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res 2007; 44 (02) 87-98
- 10 Ince C, Mayeux PR, Nguyen T. et al; ADQI XIV Workgroup. The endothelium in sepsis. Shock 2016; 45 (03) 259-270
- 11 Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454 (03) 345-359
- 12 Yang Y, Schmidt EP. The endothelial glycocalyx: an important regulator of the pulmonary vascular barrier. Tissue Barriers 2013; 1 (01) e23494
- 13 Kundra P, Goswami S. Endothelial glycocalyx: role in body fluid homeostasis and fluid management. Indian J Anaesth 2019; 63 (01) 6-14
- 14 Ihrcke NS, Wrenshall LE, Lindman BJ, Platt JL. Role of heparan sulfate in immune system-blood vessel interactions. Immunol Today 1993; 14 (10) 500-505
- 15 Rosenberg RD, Shworak NW, Liu J, Schwartz JJ, Zhang L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated?. J Clin Invest 1997; 99 (09) 2062-2070
- 16 Teng YH, Aquino RS, Park PW. Molecular functions of syndecan-1 in disease. Matrix Biol 2012; 31 (01) 3-16
- 17 Savery MD, Jiang JX, Park PW, Damiano ER. The endothelial glycocalyx in syndecan-1 deficient mice. Microvasc Res 2013; 87: 83-91
- 18 Foley EM, Esko JD. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride-rich lipoproteins. Prog Mol Biol Transl Sci 2010; 93: 213-233
- 19 Xian X, Gopal S, Couchman JR. Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res 2010; 339 (01) 31-46
- 20 Leonova EI, Galzitskaya OV. Structure and functions of syndecans in vertebrates. Biochemistry (Mosc) 2013; 78 (10) 1071-1085
- 21 Wang S, Qiu Y, Bai B. The expression, regulation, and biomarker potential of glypican-1 in cancer. Front Oncol 2019; 9: 614
- 22 Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2014; 34: 64-79
- 23 Ebong EE, Lopez-Quintero SV, Rizzo V, Spray DC, Tarbell JM. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr Biol 2014; 6 (03) 338-347
- 24 Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015; 80 (03) 389-402
- 25 Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019; 23 (01) 16
- 26 Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2012; 40 (04) 828-839
- 27 Jacob M, Bruegger D, Rehm M. et al. The endothelial glycocalyx affords compatibility of Starling's principle and high cardiac interstitial albumin levels. Cardiovasc Res 2007; 73 (03) 575-586
- 28 Dull RO, Cluff M, Kingston J. et al. Lung heparan sulfates modulate K(fc) during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction. Am J Physiol Lung Cell Mol Physiol 2012; 302 (09) L816-L828
- 29 Adamson RH. Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J Physiol 1990; 428: 1-13
- 30 Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 2003; 93 (10) e136-e142
- 31 Pahakis MY, Kosky JR, Dull RO, Tarbell JM. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 2007; 355 (01) 228-233
- 32 Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 2003; 23 (09) 1541-1547
- 33 Mulivor AW, Lipowsky HH. Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol 2002; 283 (04) H1282-H1291
- 34 Schmidt EP, Yang Y, Janssen WJ. et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18 (08) 1217-1223
- 35 Voyvodic PL, Min D, Liu R. et al. Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow. J Biol Chem 2014; 289 (14) 9547-9559
- 36 Chappell D, Brettner F, Doerfler N. et al. Protection of glycocalyx decreases platelet adhesion after ischaemia/reperfusion: an animal study. Eur J Anaesthesiol 2014; 31 (09) 474-481
- 37 Chappell D, Heindl B, Jacob M. et al. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology 2011; 115 (03) 483-491
- 38 Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 2005; 6 (09) 902-910
- 39 Schmidt EP, Lee WL, Zemans RL, Yamashita C, Downey GP. On, around, and through: neutrophil-endothelial interactions in innate immunity. Physiology (Bethesda) 2011; 26 (05) 334-347
- 40 Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 2013; 14 (03) 166-180
- 41 Yang X, Liaw L, Prudovsky I. et al. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep 2015; 17 (06) 509
- 42 Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002; 71: 435-471
- 43 Singer M, Deutschman CS, Seymour CW. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
- 44 Vincent J-L, Marshall JC, Ñamendys-Silva SA. et al; ICON investigators. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med 2014; 2 (05) 380-386
- 45 Liu V, Escobar GJ, Greene JD. et al. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 2014; 312 (01) 90-92
- 46 Tiru B, DiNino EK, Orenstein A. et al. The economic and humanistic burden of severe sepsis. Pharmacoeconomics 2015; 33 (09) 925-937
- 47 Mackenzie I, Lever A. Management of sepsis. BMJ 2007; 335 (7626): 929-932
- 48 Ince C. The microcirculation is the motor of sepsis. Crit Care 2005; 9 (Suppl. 04) S13-S19
- 49 Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med 2020; 202 (03) 361-370
- 50 LaRivière WB, Schmidt EP. The pulmonary endothelial glycocalyx in ARDS: a critical role for heparan sulfate. Curr Top Membr 2018; 82: 33-52
- 51 Han S, Lee SJ, Kim KE. et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med 2016; 8 (335) 335ra55
- 52 Lygizos MI, Yang Y, Altmann CJ. et al. Heparanase mediates renal dysfunction during early sepsis in mice. Physiol Rep 2013; 1 (06) e00153
- 53 Garsen M, Benner M, Dijkman HB. et al. Heparanase is essential for the development of acute experimental glomerulonephritis. Am J Pathol 2016; 186 (04) 805-815
- 54 Chen S, Zhang X, Sun Y, Hu Z, Lu S, Ma X. Unfractionated heparin attenuates intestinal injury in mouse model of sepsis by inhibiting heparanase. Int J Clin Exp Pathol 2015; 8 (05) 4903-4912
- 55 Colbert JF, Schmidt EP. Endothelial and microcirculatory function and dysfunction in sepsis. Clin Chest Med 2016; 37 (02) 263-275
- 56 Hippensteel JA, Uchimido R, Tyler PD. et al. Intravenous fluid resuscitation is associated with septic endothelial glycocalyx degradation. Crit Care 2019; 23 (01) 259
- 57 Hippensteel JA, Anderson BJ, Orfila JE. et al. Circulating heparan sulfate fragments mediate septic cognitive dysfunction. J Clin Invest 2019; 129 (04) 1779-1784
- 58 Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 2008; 30 (06) 623-627
- 59 Ikeda M, Matsumoto H, Ogura H. et al. Circulating syndecan-1 predicts the development of disseminated intravascular coagulation in patients with sepsis. J Crit Care 2018; 43: 48-53
- 60 Schmidt EP, Li G, Li L. et al. The circulating glycosaminoglycan signature of respiratory failure in critically ill adults. J Biol Chem 2014; 289 (12) 8194-8202
- 61 Murphy LS, Wickersham N, McNeil JB. et al. Endothelial glycocalyx degradation is more severe in patients with non-pulmonary sepsis compared to pulmonary sepsis and associates with risk of ARDS and other organ dysfunction. Ann Intensive Care 2017; 7 (01) 102
- 62 Wei S, Gonzalez Rodriguez E, Chang R, Holcomb JB, Kao LS, Wade CE. PROPPR Study Group. Elevated syndecan-1 after trauma and risk of sepsis: a secondary analysis of patients from the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) Trial. J Am Coll Surg 2018; 227 (06) 587-595
- 63 Li Q, Park PW, Wilson CL, Parks WC. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 2002; 111 (05) 635-646
- 64 Adepu S, Rosman CW, Dam W. et al. Incipient renal transplant dysfunction associates with tubular syndecan-1 expression and shedding. Am J Physiol Renal Physiol 2015; 309 (02) F137-F145
- 65 Vuong TT, Reine TM, Sudworth A, Jenssen TG, Kolset SO. Syndecan-4 is a major syndecan in primary human endothelial cells in vitro, modulated by inflammatory stimuli and involved in wound healing. J Histochem Cytochem 2015; 63 (04) 280-292
- 66 Smart L, Macdonald SPJ, Burrows S, Bosio E, Arendts G, Fatovich DM. Endothelial glycocalyx biomarkers increase in patients with infection during Emergency Department treatment. J Crit Care 2017; 42: 304-309
- 67 Nikaido T, Tanino Y, Wang X. et al. Serum syndecan-4 as a possible biomarker in patients with acute pneumonia. J Infect Dis 2015; 212 (09) 1500-1508
- 68 Nelson A, Johansson J, Tydén J, Bodelsson M. Circulating syndecans during critical illness. APMIS 2017; 125 (05) 468-475
- 69 Fisher J, Linder A, Bentzer P. Elevated plasma glypicans are associated with organ failure in patients with infection. Intensive Care Med Exp 2019; 7 (01) 2
- 70 Martin L, De Santis R, Koczera P. et al. The synthetic antimicrobial peptide 19-2.5 interacts with heparanase and heparan sulfate in murine and human sepsis. PLoS One 2015; 10 (11) e0143583
- 71 Schmidt EP, Overdier KH, Sun X. et al. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am J Respir Crit Care Med 2016; 194 (04) 439-449
- 72 Mulivor AW, Lipowsky HH. Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 2009; 16 (08) 657-666
- 73 Chen Y, Hayashida A, Bennett AE, Hollingshead SK, Park PW. Streptococcus pneumoniae sheds syndecan-1 ectodomains through ZmpC, a metalloproteinase virulence factor. J Biol Chem 2007; 282 (01) 159-167
- 74 Ibberson CB, Jones CL, Singh S. et al. Staphylococcus aureus hyaluronidase is a CodY-regulated virulence factor. Infect Immun 2014; 82 (10) 4253-4264
- 75 Purushothaman A, Chen L, Yang Y, Sanderson RD. Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 2008; 283 (47) 32628-32636
- 76 McFarlane SI, Winer N, Sowers JR. Role of the natriuretic peptide system in cardiorenal protection. Arch Intern Med 2003; 163 (22) 2696-2704
- 77 Kuhn M. Endothelial actions of atrial and B-type natriuretic peptides. Br J Pharmacol 2012; 166 (02) 522-531
- 78 Bruegger D, Jacob M, Rehm M. et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 2005; 289 (05) H1993-H1999
- 79 Chappell D, Bruegger D, Potzel J. et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care 2014; 18 (05) 538
- 80 Potter DR, Damiano ER. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res 2008; 102 (07) 770-776
- 81 Oshima K, Haeger SM, Hippensteel JA, Herson PS, Schmidt EP. More than a biomarker: the systemic consequences of heparan sulfate fragments released during endothelial surface layer degradation (2017 Grover Conference Series). Pulm Circ 2018; 8 (01) 2045893217745786
- 82 Jannaway M, Yang X, Meegan JE, Coleman DC, Yuan SY. Thrombin-cleaved syndecan-3/-4 ectodomain fragments mediate endothelial barrier dysfunction. PLoS One 2019; 14 (05) e0214737
- 83 Jiang D, Liang J, Fan J. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005; 11 (11) 1173-1179
- 84 Zhang F, Zheng L, Cheng S. et al. Comparison of the interactions of different growth factors and glycosaminoglycans. Molecules 2019; 24 (18) 3360
- 85 Oshima K, Han X, Ouyang Y. et al. Loss of endothelial sulfatase-1 after experimental sepsis attenuates subsequent pulmonary inflammatory responses. Am J Physiol Lung Cell Mol Physiol 2019; 317 (05) L667-L677
- 86 Zhang Y, Haeger SM, Yang Y, Dailey KL, Ford JA, Schmidt EP. Circulating heparan sulfate fragments attenuate histone-induced lung injury independently of histone binding. Shock 2017; 48 (06) 666-673
- 87 Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 2002; 168 (10) 5233-5239
- 88 Martin L, Schmitz S, De Santis R. et al. Peptide 19-2.5 inhibits heparan sulfate-triggered inflammation in murine cardiomyocytes stimulated with human sepsis serum. PLoS One 2015; 10 (05) e0127584
- 89 Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg 2012; 73 (01) 60-66
- 90 Levi M, van der Poll T. Coagulation and sepsis. Thromb Res 2017; 149: 38-44
- 91 Muñoz EM, Linhardt RJ. Heparin-binding domains in vascular biology. Arterioscler Thromb Vasc Biol 2004; 24 (09) 1549-1557
- 92 Sun X, Li L, Overdier KH. et al. Analysis of total human urinary glycosaminoglycan disaccharides by liquid chromatography-tandem mass spectrometry. Anal Chem 2015; 87 (12) 6220-6227
- 93 Yang Y, Haeger SM, Suflita MA. et al. Fibroblast growth factor signaling mediates pulmonary endothelial glycocalyx reconstitution. Am J Respir Cell Mol Biol 2017; 56 (06) 727-737
- 94 Jaimes F, De La Rosa G, Morales C. et al. Unfractioned heparin for treatment of sepsis: A randomized clinical trial (The HETRASE Study). Crit Care Med 2009; 37 (04) 1185-1196
- 95 Bandeshe H, Boots R, Dulhunty J. et al; IPHIVAP investigators of the Australian and New Zealand Intensive Care Society Clinical Trials Group. Is inhaled prophylactic heparin useful for prevention and management of pneumonia in ventilated ICU patients?. J Crit Care 2016; 35: 231-239