RSS-Feed abonnieren
DOI: 10.1055/s-0041-108197
Defektrekonstruktion nach onkologischer Resektion und Bestrahlung – Indikationen zur mikrochirurgischen Rekonstruktion
Mikrochirurgische Rekonstruktion onkologischer Defekte nach Resektion und BestrahlungReconstruction of Defects after Oncologic Resection and Radiation – Indications for Microsurgical ReconstructionMicrosurgical Reconstruction of Oncologic Defects after Resection and RadiationPublikationsverlauf
eingereicht 17. Oktober 2015
akzeptiert 20. Oktober 2015
Publikationsdatum:
16. Dezember 2015 (online)
Zusammenfassung
In der chirurgischen Therapie von Weichgewebssarkomen an den Extremitäten ist zum Erreichen einer lokalen Tumorkontrolle oftmals eine begleitende Radiatio indiziert. Neoadjuvante wie auch adjuvante Bestrahlung verursachen durch das Auftreten von Wundheilungsstörungen, Ulzera, Osteonekrose und Folgefrakturen jedoch gleichzeitig eine beträchtliche Morbiditätszunahme. Als Gründe finden sich gestörte Zellmediatorlevel, eine Fibrosierung bei gleichzeitig verminderter Zellteilungsrate und beeinträchtigte Durchblutung. Hier beschreiben wir mögliche lokale konservative Therapieverfahren, die allerdings insgesamt eher schlechte Erfolgsraten zeigen. Zusätzlich werden plastisch chirurgische Verfahren dargestellt, die eine Therapie dieser bestrahlungsinduzierten Probleme ermöglichen. Die chirurgische Rekonstruktion umfasst die komplette Bandbreite plastisch-rekonstruktiver Techniken, wobei einfache chirurgische Lösungen wie Random-Pattern-Lappen oder Spalthauttransplantion häufig mit Komplikationen vergesellschaftet sind, weshalb in einer großen Anzahl der Fälle ein freier Gewebetransfer notwendig werden kann.
Abstract
The surgical treatment of soft tissue sarcomas in the extremities frequently requires radiation therapy to achieve local tumour control. However, both adjuvant and neoadjuvant radiation are associated with significant morbidity caused by impaired wound healing, ulcers or osteonecrosis with subsequent fractures. This is due to altered local cell mediator levels, fibrosis occurring simultaneously with decreased cell division rates and diminished vascularity. This article describes a number of local conservative treatment options, all of which have limited success rates. In addition, it describes plastic surgical treatment options for radiation-induced local morbidity. Surgical reconstruction includes the full range of plastic reconstructive techniques. However, less complex options such as random pattern flaps or split thickness skin grafts are often associated with complications. Therefore, a large number of cases require free tissue transfer.
-
Literatur
- 1 Ghadimi MP, Rehders A, Knoefel WT. Multimodal management in soft tissue sarcoma of the trunk and extremities. Chirurg 2014; 85: 378-382
- 2 Kraus-Tiefenbacher US, Van Kampen M. Current Trends in Radiotherapy Following Surgical Resection of Soft-tissue Sarcoma of the Extremities and Trunk. Handchir Mikrochir Plast Chir 2015; 47: 128-133
- 3 Kachare SD, Brinkley J, Vohra NA et al. Radiotherapy associated with improved survival for high-grade sarcoma of the extremity. J Surg Oncol 2015; DOI: 10.1002/jso.23989. [Epub ahead of print]
- 4 Dormand EL, Banwell PE, Goodacre TE. Radiotherapy and wound healing. Int Wound J 2005; 2: 112-127
- 5 Haubner F, Ohmann E, Pohl F et al. Wound healing after radiation therapy: review of the literature. Radiat Oncol 2012; 7: 162-167
- 6 Straub JM, New J, Hamilton CD et al. Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol 2015;
- 7 Wiebringhaus P, Gröger A, Menke H. Secondary Angiosarcoma of the Breast after Breast-conserving Therapy. Handchir Mikrochir Plast Chir 2015; 47: 134-138
- 8 Herskind C, Bamberg M, Rodemann HP. The role of cytokines in the development of normal-tissue reactions after radiotherapy. Strahlenther Onkol 1998; 174 (Suppl. 03) 12-15
- 9 Shi HP, Most D, Efron DT et al. The role of iNOS in wound healing. Surgery 2001; 130: 225-229
- 10 Schaffer M, Weimer W, Wider S et al. Differential expression of inflammatory mediators in radiation-impaired wound healing. J Surg Res 2002; 107: 93-100
- 11 Illsley MC, Peacock JH, McAnulty RJ et al. Increased collagen production in fibroblasts cultured from irradiated skin and effect of TGF beta(1)- clinical study. Br J Cancer 2000; 83: 650-654
- 12 Gu Q, Wang D, Gao Y et al. Expression of MMP1 in surgical and radiation impaired wound healing and its effects on the healing process. J Environ Pathol Toxicol Oncol 2002; 21: 71-78
- 13 O’Sullivan B, Griffin AM, Dickie CI et al. Phase 2 study of preoperative image-guided intensity-modulated radiation therapy to reduce wound and combined modality morbidities in lower extremity soft tissue sarcoma. Cancer 2013; 119: 1878-1884
- 14 Sternheim A, Saidi K, Lochab J et al. Internal fixation of radiation-induced pathological fractures of the femur has a high rate of failure. Bone Joint J 2013; 95-B: 1144-1148
- 15 Schmeler K, Jhingran A, Lyer R et al. Pelvic fractures after radiotherapy for cervical cancer. Cancer 2010; 116: 625-630
- 16 Noël-Savina E, Descourt R. Osteoporotic vertebral compression fractures: a rare complication of radiotherapy in a patient with lung cancer. Clin Imaging 2013; 37: 390-392
- 17 Hom DB, Adams G, Koreis M et al. Choosing the optimal wound dressing for irradiated soft tissue wounds. Otolaryngol Head Neck Surg 1999; 121: 591-598
- 18 Harris A, Komray RR. Cost-effective management of pharyngocutaneous fistulas following laryngectomy. Ostomy Wound Manage 1993; 39 36–7–40–2 4
- 19 Tahir AR, Westhuyzen J, Dass J et al. Hyperbaric oxygen therapy for chronic radiation-induced tissue injuries: Australasia’s largest study. Asia Pac J Clin Oncol 2015; 11: 68-77
- 20 Thom SR. Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg 2011; 127 (Suppl. 01) 131S-141S
- 21 Friedman HI, Fitzmaurice M, Lefaivre JF et al. An evidence-based appraisal of the use of hyperbaric oxygen on flaps and grafts. Plast Reconstr Surg 2006; 117: 175S-190S discussion 91S-92S
- 22 Huang SP, Huang CH, Shyu JF et al. Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. J Biomed Sci 2013; 20: 51
- 23 Akita S, Yoshimoto H, Akino K et al. Early experiences with stem cells in treating chronic wounds. Clin Plast Surg 2012; 39: 281-292
- 24 Sabesan VJ, Pedrotty DM, Urbaniak JR et al. Free vascularized fibular grafting preserves athletic activity level in patients with osteonecrosis. J Surg Orthop Adv 2012; 21: 242-245
- 25 Urbaniak JR, Coogan PG, Gunneson EB et al. Treatment of osteonecrosis of the femoral head with free vascularized fibular grafting. A long-term follow-up study of one hundred and three hips. J Bone Joint Surg Am 1995; 77: 681-694
- 26 Jones Jr DB, Burger H, Bishop AT et al. Treatment of scaphoid waist nonunions with an avascular proximal pole and carpal collapse. A comparison of two vascularized bone grafts. J Bone Joint Surg Am 2008; 90: 2616-2625
- 27 Jones Jr DB, Burger H, Bishop AT et al. Treatment of scaphoid waist nonunions with an avascular proximal pole and carpal collapse. Surgical technique. J Bone Joint Surg Am 2009; 91 (Suppl. 02) 169-183
- 28 Jones Jr DB, Moran SL, Bishop AT et al. Free-vascularized medial femoral condyle bone transfer in the treatment of scaphoid nonunions. Plast Reconstr Surg 2010; 125: 1176-1184
- 29 Brunelli G, Vigasio A, Battiston B et al. Free microvascular fibular versus conventional bone grafts. Int Surg 1991; 76: 33-42
- 30 Judet H, Judet J, Gilbert A. Vascular microsurgery in orthopaedics. Int Orthop 1981; 5: 61-68
- 31 Fuchs B, Steinmann SP, Bishop AT. Free vascularized corticoperiosteal bone graft for the treatment of persistent nonunion of the clavicle. J Shoulder Elbow Surg 2005; 14: 264-268
- 32 Jones Jr DB, Rhee PC, Bishop AT et al. Free vascularized medial femoral condyle autograft for challenging upper extremity nonunions. Hand Clin 2012; 28: 493-501
- 33 Kakar S, Duymaz A, Steinmann S et al. Vascularized medial femoral condyle corticoperiosteal flaps for the treatment of recalcitrant humeral nonunions. Microsurgery 2011; 31: 85-92
- 34 Soldado F, Knörr J, Haddad S et al. Vascularized tibial periosteal graft in complex cases of bone nonunion in children. Microsurgery 2015; 35: 239-243
- 35 Butler CE, Gündeslioglu AO, Rodriguez-Bigas MA. Outcomes of immediate vertical rectus abdominis myocutaneous flap reconstruction for irradiated abdominoperineal resection defects. J Am Coll Surg 2008; 206: 694-703
- 36 Horch RE, Hohenberger W, Eweida A et al. A hundred patients with vertical rectus abdominis myocutaneous (VRAM) flap for pelvic reconstruction after total pelvic exenteration. Int J Colorectal Dis 2014; 29: 813-823
- 37 Knobloch K, Vogt PM. The reconstructive clockwork of the twenty-first century: an extension of the concept of the reconstructive ladder and reconstructive elevator. Plast Reconstr Surg 2010; 126: 220e-222e
- 38 Baldini EH, Lapidus MR, Wang Q et al. Predictors for major wound complications following preoperative radiotherapy and surgery for soft-tissue sarcoma of the extremities and trunk: importance of tumor proximity to skin surface. Ann Surg Oncol 2013; 20: 1494-1499
- 39 Schmidt VJ, Horch RE, Dragu A et al. Perineal and vaginal wall reconstruction using a combined inferior gluteal and pudendal artery perforator flap: a case report. J Plast Reconstr Aesthet Surg 2012; 65: 1734-1737
- 40 Kneser U, Beier JP, Schmitz M et al. Zonal perfusion patterns in pedicled free-style perforator flaps. J Plast Reconstr Aesthet Surg 2014; 67: e9-e17
- 41 Musters GD, Lapid O, Bemelman WA et al. Surgery for complex perineal fistula following rectal cancer treatment using biological mesh combined with gluteal perforator flap. Tech Coloproctol 2014; 18: 955-959
- 42 Acartürk TO, Tunc S, Acar F. Versatility of the Perforator-Based Adipose, Adipofascial, and Fasciocutaneous Flaps in Reconstruction of Distal Leg and Foot Defects. J Foot Ankle Surg 2015; Feb 4. pii: S1067-2516(14)00648-6 DOI: 10.1053/j.jfas.2014.12.020. [Epub ahead of print]
- 43 Innocenti M, Menichini G, Baldrighi C et al. Are there risk factors for complications of perforator-based propeller flaps for lower-extremity reconstruction?. Clin Orthop Relat Res 2014; 472: 2276-2286
- 44 Nelson JA, Fischer JP, Brazio PS et al. A review of propeller flaps for distal lower extremity soft tissue reconstruction: Is flap loss too high?. Microsurgery 2013; 33: 578-586
- 45 Schwartz A, Rebecca A, Smith A et al. Risk factors for significant wound complications following wide resection of extremity soft tissue sarcomas. Clin Orthop Relat Res 2013; 471: 3612-3617
- 46 Townley WA, Mah E, O’Neill AC et al. Reconstruction of sarcoma defects following pre-operative radiation: free tissue transfer is safe and reliable. J Plast Reconstr Aesthet Surg 2013; 66: 1575-1579
- 47 Chao AH, Chang DW, Shuaib SW et al. The effect of neoadjuvant versus adjuvant irradiation on microvascular free flap reconstruction in sarcoma patients. Plast Reconstr Surg 2012; 129: 675-682
- 48 Penna V, Iblher N, Momeni A et al. Free tissue transfer in reconstruction following soft tissue sarcoma resection. Microsurgery 2011; 31: 434-440
- 49 Spierer MM, Alektiar KM, Zelefsky MJ et al. Tolerance of tissue transfers to adjuvant radiation therapy in primary soft tissue sarcoma of the extremity. Int J Radiat Oncol Biol Phys 2003; 56: 1112-1116
- 50 Lee HY, Cordeiro PG, Mehrara BJ et al. Reconstruction after soft tissue sarcoma resection in the setting of brachytherapy: a 10-year experience. Ann Plast Surg 2004; 52: 486-491
- 51 Schloßhauer T, Mehling IM, Moll W et al. Plastic Surgical Management in Lower Extremity Sarcoma Reconstruction. Handchir Mikrochir Plast Chir 2015; 47
- 52 Engelhardt TO, Alghamdi HG, Wallmichrath J et al. Free Gracilis Flap for Anatomic Reconstruction after Limb-sparing Sarcoma Resection. Handchir Mikrochir Plast Chir 2015; 47: 111-117
- 53 Sawhney R, Ducic Y. Management of pathologic fractures of the mandible secondary to osteoradionecrosis. Otolaryngol Head Neck Surg 2013; 148: 54-58
- 54 Chen SH, Chen HC, Horng SY et al. Reconstruction for osteoradionecrosis of the mandible: superiority of free iliac bone flap to fibula flap in postoperative infection and healing. Ann Plast Surg 2014; 73 (Suppl. 01) S18-S26
- 55 Thiele OC, Kremer T, Kneser U et al. Indications for the microvascular medial femoral condylar flap in craniomaxillofacial surgery. Br J Oral Maxillofac Surg 2014; 52: 569-571
- 56 Sauerbier M, Lehnhardt M, Giunta RE. Interdisciplinary Treatment of Soft Tissue Sarcomas. Handchir Mikrochir Plast Chir 2015; 47
- 57 Steinau HU, Farzaliyev F, Stricker I et al. Sarcoma of the Hand and Wrist. Handchir Mikrochir Plast Chir 2015; 47: 76-82