CC BY 4.0 · Rev Bras Ginecol Obstet 2021; 43(03): 190-199
DOI: 10.1055/s-0040-1722156
Original Article
Mastology

Comparison of Automated Breast Ultrasound and Hand-Held Breast Ultrasound in the Screening of Dense Breasts

Comparação entre a ultrassonografia automatizada e a ultrassonografia convencional no rastreio de mamas densas
1   Radiology Department, Diagnósticos da América (DASA), Barra da Tijuca, RJ, Brazil
,
1   Radiology Department, Diagnósticos da América (DASA), Barra da Tijuca, RJ, Brazil
,
1   Radiology Department, Diagnósticos da América (DASA), Barra da Tijuca, RJ, Brazil
,
1   Radiology Department, Diagnósticos da América (DASA), Barra da Tijuca, RJ, Brazil
,
1   Radiology Department, Diagnósticos da América (DASA), Barra da Tijuca, RJ, Brazil
,
1   Radiology Department, Diagnósticos da América (DASA), Barra da Tijuca, RJ, Brazil
,
1   Radiology Department, Diagnósticos da América (DASA), Barra da Tijuca, RJ, Brazil
2   Clinical Epidemiology Program, Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ, Brazil
,
1   Radiology Department, Diagnósticos da América (DASA), Barra da Tijuca, RJ, Brazil
3   Radiology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
› Author Affiliations
Funding This research was supported by Diagnósticos das Américas (DASA). We thank our directors, specially Romeu Domingues and Roberto Domingues, and our colleagues from DASA who provided the structure, insight, and expertise that greatly assisted the research. We also thank General Electric (GE) for lending us the device, providing all support for the project, and for the opportunity to evaluate the ABUS. We thank all the technicians (Roselane de Oliveira Sacramento, Marcia Cristina Dias Mendes, Kelly Rose Fontes Aragão, Gabriela da Silva Moraes, Rosália Aparecida Dutra Ribeiro and Thatyana Costa Fernandes) for assistance with the performance of the ABUS.

Abstract

Objective To compare hand-held breast ultrasound (HHBUS) and automated breast ultrasound (ABUS) as screening tool for cancer.

Methods A cross-sectional study in patients with mammographically dense breasts was conducted, and both HHBUS and ABUS were performed. Hand-held breast ultrasound was acquired by radiologists and ABUS by mammography technicians and analyzed by breast radiologists. We evaluated the Breast Imaging Reporting and Data System (BI-RADS) classification of the exam and of the lesion, as well as the amount of time required to perform and read each exam. The statistical analysis employed was measures of central tendency and dispersion, frequencies, Student t test, and a univariate logistic regression, through the odds ratio and its respective 95% confidence interval, and with p < 0.05 considered of statistical significance.

Results A total of 440 patients were evaluated. Regarding lesions, HHBUS detected 15 (7.7%) BI-RADS 2, 175 (89.3%) BI-RADS 3, and 6 (3%) BI-RADS 4, with 3 being confirmed by biopsy as invasive ductal carcinomas (IDCs), and 3 false-positives. Automated breast ultrasound identified 12 (12.9%) BI-RADS 2, 75 (80.7%) BI-RADS 3, and 6 (6.4%) BI-RADS 4, including 3 lesions detected by HHBUS and confirmed as IDCs, in addition to 1 invasive lobular carcinoma and 2 high-risk lesions not detected by HHBUS. The amount of time required for the radiologist to read the ABUS was statistically inferior compared with the time required to read the HHBUS (p < 0.001). The overall concordance was 80.9%. A total of 219 lesions were detected, from those 70 lesions by both methods, 126 only by HHBUS (84.9% not suspicious by ABUS) and 23 only by ABUS.

Conclusion Compared with HHBUS, ABUS allowed adequate sonographic study in supplemental screening for breast cancer in heterogeneously dense and extremely dense breasts.

Resumo

Objetivo Comparar a ultrassonografia convencional das mamas (US) com a ultrassonografia automatizada das mamas (ABUS) no rastreio do câncer.

Métodos Realizamos um estudo transversal com pacientes com mamas mamograficamente densas, sendo avaliadas pela US e pela ABUS. A US foi realizada por radiologistas e a ABUS por técnicos de mamografia e analisada por radiologistas especializados em mama. A classificação Breast Imaging Reporting and Data System (BIRADS) do exame e das lesões o tempo de leitura e de aquisição foram avaliados. A análise estatística foi realizada através de medidas de tendência central, dispersão e frequências, teste t de Student e regressão logística univariada, através do odds ratio, com intervalo de confiança de 95%, e com p < 0,05 sendo considerado estatisticamente significante.

Resultados Foram avaliadas 440 pacientes. Em relação às lesões, a US detectou 15 (7,7%) BI-RADS 2, 175 (89,3%) BI-RADS 3 e 6 (3%) BI-RADS 4, das quais 3 foram confirmadas, por biópsia, como carcinomas ductais invasivos e 3 falso-positivos. A ABUS identificou 12 (12,9%) BI-RADS 2, 75 (80,7%) BI-RADS 3 e 6 (6,4%) BI-RADS 4, incluindo 3 lesões detectadas pela US e confirmadas como carcinomas ductais invasivos, além de 1 carcinoma lobular invasivo e 2 lesões de alto risco não detectadas pela US. O tempo de leitura dos exames da ABUS foi estatisticamente inferior ao tempo do radiologista para realizar a US (p < 0,001). A concordância foi de 80,9%. Um total de 219 lesões foram detectadas, das quais 70 por ambos os métodos, 126 observadas apenas pela US (84,9% não eram lesões suspeitas no ABUS) e 23 apenas pela ABUS.

Conclusão Comparado à US, a ABUS permitiu adequado estudo complementar no rastreio do câncer de mamas heterogeneamente densas e extremamente densas.

Contributors

All authors participated in the concept and design of the present study; analysis and interpretation of data; draft or revision of the manuscript, and they have approved the manuscript as submitted. All authors are responsible for the reported research.




Publication History

Received: 25 May 2020

Accepted: 06 October 2020

Article published online:
15 April 2021

© 2021. Federação Brasileira de Ginecologia e Obstetrícia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Santos MO. Estimativa 2018: incidência de câncer no Brasil. Rev Bras Cancerol 2018; 64 (01) 119-120
  • 2 Brem RF, Lenihan MJ, Lieberman J, Torrente J. Screening breast ultrasound: past, present, and future. AJR Am J Roentgenol 2015; 204 (02) 234-240
  • 3 Urban LABD, Schaefer MB, Duarte DL. et al. Recommendations of Colégio Brasileiro de Radiologia e Diagnóstico por Imagem, Sociedade Brasileira de Mastologia, and Federação Brasileira das Associações de Ginecologia e Obstetrícia for imaging screening for breast cancer. Radiol Bras 2012; 45 (06) 334-339
  • 4 Aripoli A, Fountain K, Winblad O, Gatewood J, Hill J, Wick JA, Inciardi M. Supplemental screening with automated breast ultrasound in women with dense breasts: comparing notification methods and screening behaviors. AJR Am J Roentgenol 2018; 210 (01) W22-W28
  • 5 American College of Radiology [Internet]. New ACR and SBI breast cancer screening guidelines call for significant changes to screening process. 2018 [cited 2020 May 11]. Available from: https://www.acr.org/Media-Center/ACR-News-Releases/2018/New-ACR-and-SBI-Breast-Cancer-Screening-Guidelines-Call-for-Significant-Changes-to-Screening-Process
  • 6 European Breast Cancer [Internet]. European Breast Cancer guideline. 2020 [cited 2020 May 11]. Available from: https://healthcare-quality.jrc.ec.europa.eu/european-breast-cancer-guidelines
  • 7 Wang AT, Vachon CM, Brandt KR, Ghosh K. Breast density and breast cancer risk: a practical review. Mayo Clin Proc 2014; 89 (04) 548-557
  • 8 Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mammographic density and age: implications for breast cancer screening. AJR Am J Roentgenol 2012; 198 (03) W292-5
  • 9 Sprague BL, Gangnon RE, Burt V, Trentham-Dietz A, Hampton JM, Wellman RD. et al. Prevalence of mammographically dense breasts in the United States. J Natl Cancer Inst 2014; 106 (10) dju255
  • 10 Calas MJG, Almeida RMVR, Gutfilen B, Pereira WCA. Intraobserver interpretation of breast ultrasonography following the BI-RADS classification. Eur J Radiol 2010; 74 (03) 525-528
  • 11 Calas MJG, Almeida RMVR, Gutfilen B, Pereira WCA. Interobserver concordance in the BI-RADS classification of breast ultrasound exams. Clinics (São Paulo) 2012; 67 (02) 185-189
  • 12 Bae MS, Moon WK, Chang JM, Koo HR, Kim WH, Cho N. et al. Breast cancer detected with screening US: reasons for nondetection at mammography. Radiology 2014; 270 (02) 369-377
  • 13 Berg WA. Current status of supplemental screening in dense breasts. J Clin Oncol 2016; 34 (16) 1840-1843
  • 14 Mendelson EB, Böhm-Vélez M, Berg WA. et al. ACR BI-RADS Ultrasound. In: D'Orsi CJ, Sickles EA, Mendelson EB, Morris EA. editors. ACR BI-RADS® Atlas, breast imaging reporting and data system. 5th ed.. Reston: American College of Radiology; 2013: 1-173
  • 15 Golatta M, Baggs C, Schweitzer-Martin M, Domschke C, Schott S, Harcos A. et al. Evaluation of an automated breast 3D-ultrasound system by comparing it with hand-held ultrasound (HHUS) and mammography. Arch Gynecol Obstet 2015; 291 (04) 889-895
  • 16 Berg WA, Bandos AI, Mendelson EB, Lehrer D, Jong RA, Pisano ED. Ultrasound as the primary screening test for breast cancer: analysis from ACRIN 6666. J Natl Cancer Inst 2015; 108 (04) djv367
  • 17 Kim SH. Image quality and artifacts in automated breast ultrasonography. Ultrasonography 2019; 38 (01) 83-91
  • 18 Kaplan SS. Automated whole breast ultrasound. Radiol Clin North Am 2014; 52 (03) 539-546
  • 19 Brem RF, Tabár L, Duffy SW, Inciardi MF, Guingrich JA, Hashimoto BE. et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. Radiology 2015; 274 (03) 663-673
  • 20 Weigert JM. The Connecticut Experiment; The third installment: 4 years of screening women with dense breasts with bilateral ultrasound. Breast J 2017; 23 (01) 34-39
  • 21 Rella R, Belli P, Giuliani M, Bufi E, Carlino G, Rinaldi P, Manfredi R. Automated Breast Ultrasonography (ABUS) in the screening and diagnostic setting: indications and practical use. Acad Radiol 2018; 25 (11) 1457-1470
  • 22 Barr RG, DeVita R, Destounis S, Manzoni F, De Silvestri A, Tinelli C. Agreement between an automated volume breast scanner and handheld ultrasound for diagnostic breast examinations. J Ultrasound Med 2017; 36 (10) 2087-2092
  • 23 Zanotel M, Bednarova I, Londero V, Linda A, Lorenzon M, Girometti R, Zuiani C. Automated breast ultrasound: basic principles and emerging clinical applications. Radiol Med (Torino) 2018; 123 (01) 1-12
  • 24 Chae EY, Cha JH, Kim HH, Shin HJ. Comparison of lesion detection in the transverse and coronal views on automated breast sonography. J Ultrasound Med 2015; 34 (01) 125-135
  • 25 Skaane P, Gullien R, Eben EB, Sandhaug M, Schulz-Wendtland R, Stoeblen F. Interpretation of automated breast ultrasound (ABUS) with and without knowledge of mammography: a reader performance study. Acta Radiol 2015; 56 (04) 404-412
  • 26 Lin X, Wang J, Han F, Fu J, Li A. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur J Radiol 2012; 81 (05) 873-878
  • 27 Shen S, Zhou Y, Xu Y, Zhang B, Duan X, Huang R. et al. A multi-centre randomised trial comparing ultrasound vs mammography for screening breast cancer in high-risk Chinese women. Br J Cancer 2015; 112 (06) 998-1004
  • 28 Ohuchi N, Suzuki A, Sobue T, Kawai M, Yamamoto S, Zheng YF. et al; J-START investigator groups. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 2016; 387 (10016): 341-348
  • 29 Wilczek B, Wilczek HE, Rasouliyan L, Leifland K. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: Report from a hospital-based, high-volume, single-center breast cancer screening program. Eur J Radiol 2016; 85 (09) 1554-1563
  • 30 Jeh SK, Kim SH, Choi JJ, Jung SS, Choe BJ, Park S, Park MS. Comparison of automated breast ultrasonography to handheld ultrasonography in detecting and diagnosing breast lesions. Acta Radiol 2016; 57 (02) 162-169
  • 31 Golatta M, Franz D, Harcos A, Junkermann H, Rauch G, Scharf A. et al. Interobserver reliability of automated breast volume scanner (ABVS) interpretation and agreement of ABVS findings with hand held breast ultrasound (HHUS), mammography and pathology results. Eur J Radiol 2013; 82 (08) e332-e336
  • 32 Wang HY, Jiang YX, Zhu QL, Zhang J, Dai Q, Liu H. et al. Differentiation of benign and malignant breast lesions: a comparison between automatically generated breast volume scans and handheld ultrasound examinations. Eur J Radiol 2012; 81 (11) 3190-3200
  • 33 Meng Z, Chen C, Zhu Y, Zhang S, Wei C, Hu B. et al. Diagnostic performance of the automated breast volume scanner: a systematic review of inter-rater reliability/agreement and meta-analysis of diagnostic accuracy for differentiating benign and malignant breast lesions. Eur Radiol 2015; 25 (12) 3638-3647
  • 34 Arleo EK, Saleh M, Ionescu D, Drotman M, Min RJ, Hentel K. Recall rate of screening ultrasound with automated breast volumetric scanning (ABVS) in women with dense breasts: a first quarter experience. Clin Imaging 2014; 38 (04) 439-444
  • 35 Kim JH, Cha JH, Kim N, Chang Y, Ko MS, Choi YW, Kim HH. Computer-aided detection system for masses in automated whole breast ultrasonography: development and evaluation of the effectiveness. Ultrasonography 2014; 33 (02) 105-115