Am J Perinatol 2022; 39(10): 1055-1064
DOI: 10.1055/s-0040-1721694
Review Article

Maternal Cardiovascular Function Following a Pregnancy Complicated by Preeclampsia

Logan C. Barr
1   Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
,
Kiera Liblik
2   Cardiovascular Imaging Network at Queen's, Department of Medicine, Queen's University, Kingston, Ontario, Canada
,
Amer M. Johri
2   Cardiovascular Imaging Network at Queen's, Department of Medicine, Queen's University, Kingston, Ontario, Canada
,
1   Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
› Author Affiliations

Abstract

Preeclampsia is a hypertensive pregnancy complication with an unknown etiology and high maternal burden worldwide. Burgeoning research has linked preeclampsia to adverse maternal health outcomes remote from pregnancy; however, the intermediary mechanisms responsible for this association have not been sufficiently established. In the present narrative review, we summarize leading evidence of structural and functional cardiovascular changes associated with prior preeclampsia, and how these changes may be linked to future maternal disease.

Key Points

  • Prior preeclampsia is associated with subclinical structural and functional vascular changes remote from pregnancy.

  • Maternal cardiac adaptations to preeclampsia may have long-term implications on cardiovascular health.

  • Clinicians have an opportunity to minimize maternal disease risk following preeclampsia.



Publication History

Received: 11 July 2020

Accepted: 04 November 2020

Article published online:
15 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science 2005; 308 (5728): 1592-1594
  • 2 Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am J Obstet Gynecol 2013; 209 (06) 544.e1-544.e12
  • 3 Thornton C, Dahlen H, Korda A, Hennessy A. The incidence of preeclampsia and eclampsia and associated maternal mortality in Australia from population-linked datasets: 2000-2008. Am J Obstet Gynecol 2013; 208 (06) 476.e1-476.e5
  • 4 Bellamy L, Casas J-P, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 2007; 335 (7627): 974
  • 5 Mosca L, Barrett-Connor E, Wenger NK. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation 2011; 124 (19) 2145-2154
  • 6 Chesley LC. Recognition of the long-term sequelae of eclampsia. Am J Obstet Gynecol 2000; 182 (1 Pt 1): 249-250
  • 7 Ogge G, Chaiworapongsa T, Romero R. et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J Perinat Med 2011; 39 (06) 641-652
  • 8 Redman CW, Sargent IL. Placental debris, oxidative stress and pre-eclampsia. Placenta 2000; 21 (07) 597-602
  • 9 Paruk F, Moodley J. Maternal and neonatal outcome in early- and late-onset pre-eclampsia. Semin Neonatol 2000; 5 (03) 197-207
  • 10 Benton SJ, Leavey K, Grynspan D, Cox BJ, Bainbridge SA. The clinical heterogeneity of preeclampsia is related to both placental gene expression and placental histopathology. Am J Obstet Gynecol 2018; 219 (06) 604.e1-604.e25
  • 11 Giannakou K, Evangelou E, Papatheodorou SI. Genetic and non-genetic risk factors for pre-eclampsia: umbrella review of systematic reviews and meta-analyses of observational studies. Ultrasound Obstet Gynecol 2018; 51 (06) 720-730
  • 12 Egbor M, Ansari T, Morris N, Green CJ, Sibbons PD. Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG 2006; 113 (05) 580-589
  • 13 Odegård RA, Vatten LJ, Nilsen ST, Salvesen KA, Austgulen R. Preeclampsia and fetal growth. Obstet Gynecol 2000; 96 (06) 950-955
  • 14 Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P. Canadian Hypertensive Disorders of Pregnancy (HDP) Working Group. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. Pregnancy Hypertens 2014; 4 (02) 105-145
  • 15 Group NHBPEPW. Report of the National High Blood Pressure Education Program Working Group on high blood pressure in pregnancy. Am J Obstet Gynecol 2000; 183 (01) S1-S22
  • 16 Brown MA, Lindheimer MD, de Swiet M, Assche AV, Moutquin J-M. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 2001; 20 (01) ix-xiv
  • 17 Gillon TE, Pels A, von Dadelszen P, MacDonell K, Magee LA. Hypertensive disorders of pregnancy: a systematic review of international clinical practice guidelines. PLoS One 2014; 9 (12) e113715
  • 18 Enkhmaa D, Wall D, Mehta PK. et al. Preeclampsia and vascular function: a window to future cardiovascular disease risk. J Womens Health (Larchmt) 2016; 25 (03) 284-291
  • 19 Grand'Maison S, Pilote L, Okano M, Landry T, Dayan N. Markers of vascular dysfunction after hypertensive disorders of pregnancy: a systematic review and meta-analysis. Hypertension 2016; 68 (06) 1447-1458
  • 20 Orabona R, Vizzardi E, Sciatti E. et al. Maternal cardiac function after HELLP syndrome: an echocardiography study. Ultrasound Obstet Gynecol 2017; 50 (04) 507-513
  • 21 Ghossein-Doha C, van Neer J, Wissink B. et al. Pre-eclampsia: an important risk factor for asymptomatic heart failure. Ultrasound Obstet Gynecol 2017; 49 (01) 143-149
  • 22 Valensise H, Lo Presti D, Gagliardi G. et al. Persistent maternal cardiac dysfunction after preeclampsia identifies patients at risk for recurrent preeclampsia. Hypertension 2016; 67 (04) 748-753
  • 23 Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Preeclampsia is associated with persistent postpartum cardiovascular impairment. Hypertension 2011; 58 (04) 709-715
  • 24 Rafik Hamad R, Larsson A, Pernow J, Bremme K, Eriksson MJ. Assessment of left ventricular structure and function in preeclampsia by echocardiography and cardiovascular biomarkers. J Hypertens 2009; 27 (11) 2257-2264
  • 25 Strobl I, Windbichler G, Strasak A. et al. Left ventricular function many years after recovery from pre-eclampsia. BJOG 2011; 118 (01) 76-83
  • 26 Tyldum EV, Backe B, Støylen A, Slørdahl SA. Maternal left ventricular and endothelial functions in preeclampsia. 2012; 91: 566-573
  • 27 Drazner MH, Rame JE, Marino EK. et al. Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol 2004; 43 (12) 2207-2215
  • 28 Ghossein-Doha C, Peeters L, van Heijster S. et al. Hypertension after preeclampsia is preceded by changes in cardiac structure and function. Hypertension 2013; 62 (02) 382-390
  • 29 Ghi T, Degli Esposti D, Montaguti E. et al. Post-partum evaluation of maternal cardiac function after severe preeclampsia. J Matern Fetal Neonatal Med 2014; 27 (07) 696-701
  • 30 Timokhina E, Kuzmina T, Strizhakov A, Pitskhelauri E, Ignatko I, Belousova V. Maternal cardiac function after normal delivery, preeclampsia, and eclampsia: a prospective study. J Pregnancy 2019; 2019: 9795765
  • 31 Gaasch WH, Little WC. Assessment of left ventricular diastolic function and recognition of diastolic heart failure. Am Heart Assoc 2007; 116: 591-593
  • 32 Murphy MSQ, Seaborn GEJ, Redfearn DP, Smith GN. Reduced heart rate variability and altered cardiac conduction after pre-eclampsia. PLoS One 2015; 10 (09) e0138664
  • 33 Ray JG, Schull MJ, Kingdom JC, Vermeulen MJ. Heart failure and dysrhythmias after maternal placental syndromes: HAD MPS Study. Heart 2012; 98 (15) 1136-1141
  • 34 Hoogsteder PHJ, Krüse AJ, Sep SJS, Dassen WR, Gorgels AP, Peeters LL. Electrocardiographic findings in women with a recent history of pre-eclampsia. Acta Obstet Gynecol Scand 2012; 91 (03) 372-378
  • 35 Brandes RP. Endothelial dysfunction and hypertension. Hypertension 2014; 64 (05) 924-928
  • 36 Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol 2013; 168 (01) 344-351
  • 37 Hamad RR, Eriksson MJ, Berg E, Larsson A, Bremme K. Impaired endothelial function and elevated levels of pentraxin 3 in early-onset preeclampsia. Acta Obstet Gynecol Scand 2012; 91 (01) 50-56
  • 38 Agatisa PK, Ness RB, Roberts JM, Costantino JP, Kuller LH, McLaughlin MK. Impairment of endothelial function in women with a history of preeclampsia: an indicator of cardiovascular risk. Am J Physiol Heart Circ Physiol 2004; 286 (04) H1389-H1393
  • 39 Barry DR, Utzschneider KM, Tong J. et al. Intraabdominal fat, insulin sensitivity, and cardiovascular risk factors in postpartum women with a history of preeclampsia. Am J Obstet Gynecol 2015; 213 (01) 104.e1-104.e11
  • 40 Evans CS, Gooch L, Flotta D. et al. Cardiovascular system during the postpartum state in women with a history of preeclampsia. Hypertension 2011; 58 (01) 57-62
  • 41 Chambers JC, Fusi L, Malik IS, Haskard DO, De Swiet M, Kooner JS. Association of maternal endothelial dysfunction with preeclampsia. JAMA 2001; 285 (12) 1607-1612
  • 42 Yinon Y, Kingdom JCP, Odutayo A. et al. Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk. Circulation 2010; 122 (18) 1846-1853
  • 43 Dietz NM, Rivera JM, Eggener SE, Fix RT, Warner DO, Joyner MJ. Nitric oxide contributes to the rise in forearm blood flow during mental stress in humans. J Physiol 1994; 480 (Pt 2): 361-368
  • 44 Goynumer G, Yucel N, Adali E, Tan T, Baskent E, Karadag C. Vascular risk in women with a history of severe preeclampsia. J Clin Ultrasound 2013; 41 (03) 145-150
  • 45 Östlund E, Al-Nashi M, Hamad RR. et al. Normalized endothelial function but sustained cardiovascular risk profile 11 years following a pregnancy complicated by preeclampsia. Hypertens Res 2013; 36 (12) 1081-1087
  • 46 Sandvik MK, Leirgul E, Nygård O. et al. Preeclampsia in healthy women and endothelial dysfunction 10 years later. Res Obstet 2013; 209 (06) 569.E1-569.E10
  • 47 Scholten RR, Thijssen DJH, Lotgering FK, Hopman MTE, Spaanderman MEA. Cardiovascular effects of aerobic exercise training in formerly preeclamptic women and healthy parous control subjects. 2014; 211: 516.e1-516.e11
  • 48 Thijssen DH, Dawson EA, Tinken TM, Cable NT, Green DJ. Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension 2009; 53 (06) 986-992
  • 49 Laughlin MH, Newcomer SC, Bender SB. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol (1985) 2008; 104 (03) 588-600
  • 50 Scholten RR, Spaanderman MEA, Green DJ, Hopman MTE, Thijssen DHJ. Retrograde shear rate in formerly preeclamptic and healthy women before and after exercise training: relationship with endothelial function. 2014; 307 (03) 418-425
  • 51 van den Oord SC, Sijbrands EJ, ten Kate GL. et al. Carotid intima-media thickness for cardiovascular risk assessment: systematic review and meta-analysis. Atherosclerosis 2013; 228 (01) 1-11
  • 52 Akhter T, Wikström A-K, Larsson M, Larsson A, Wikström G, Naessen T. Serum Pentraxin 3 is associated with signs of arterial alteration in women with preeclampsia. Int J Cardiol 2017; 241: 417-422
  • 53 Akhter T, Wikström A-K, Larsson M, Larsson A, Wikström G, Naessen T. Association between angiogenic factors and signs of arterial aging in women with pre-eclampsia. Ultrasound Obstet Gynecol 2017; 50 (01) 93-99
  • 54 Aykas F, Solak Y, Erden A. et al. Persistence of cardiovascular risk factors in women with previous preeclampsia: a long-term follow-up study. J Investig Med 2015; 63 (04) 641-645
  • 55 Blaauw J, van Pampus MG, Van Doormaal JJ. et al. Increased intima-media thickness after early-onset preeclampsia. Obstet Gynecol 2006; 107 (06) 1345-1351
  • 56 Garovic VD, Milic NM, Weissgerber TL. et al. Carotid artery intima-media thickness and subclinical atherosclerosis in women with remote histories of preeclampsia: results from a Rochester epidemiology project-based study and meta-analysis. Mayo Clin Proc 2017; 92 (09) 1328-1340
  • 57 Christensen M, Kronborg CS, Eldrup N, Rossen NB, Knudsen UB. Preeclampsia and cardiovascular disease risk assessment—do arterial stiffness and atherosclerosis uncover increased risk ten years after delivery?. Pregnancy Hypertens 2016; 6 (02) 110-114
  • 58 Blaauw J, Souwer ETD, Coffeng SM. et al. Follow up of intima-media thickness after severe early-onset preeclampsia. Acta Obstet Gynecol Scand 2014; 93 (12) 1309-1316
  • 59 Akhter T, Wikström A-K, Larsson M, Naessen T. Individual common carotid artery wall layer dimensions, but not carotid intima-media thickness, indicate increased cardiovascular risk in women with preeclampsia: an investigation using noninvasive high-frequency ultrasound. Circ Cardiovasc Imaging 2013; 6 (05) 762-768
  • 60 Franz MB, Burgmann M, Neubauer A. et al. Augmentation index and pulse wave velocity in normotensive and pre-eclamptic pregnancies. Acta Obstet Gynecol Scand 2013; 92 (08) 960-966
  • 61 Namugowa A, Iputo J, Wandabwa J. et al. Arterial stiffness in women previously with preeclampsia from a semi-rural region of South Africa. Clin Exp Hypertens 2019; 41 (01) 36-43
  • 62 van der Graaf AM, Paauw ND, Toering TJ. et al. Impaired sodium-dependent adaptation of arterial stiffness in formerly preeclamptic women: the RETAP-vascular study. Am J Physiol Heart Circ Physiol 2016; 310 (11) H1827-H1833
  • 63 Pàez O, Alfie J, Gorosito M. et al. Parallel decrease in arterial distensibility and in endothelium-dependent dilatation in young women with a history of pre-eclampsia. Clin Exp Hypertens 2009; 31 (07) 544-552
  • 64 Rönnback M, Lampinen K, Groop P-H, Kaaja R. Pulse wave reflection in currently and previously preeclamptic women. Hypertens Pregnancy 2005; 24 (02) 171-180
  • 65 Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: a disease of the microcirculation?. Hypertension 2006; 48 (06) 1012-1017
  • 66 Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia. Semin Nephrol 2011; 31 (01) 33-46
  • 67 Sena CM, Pereira AM, Seiça R. Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim Biophys Acta 2013; 1832 (12) 2216-2231
  • 68 Boas DA, Dunn AK. Laser speckle contrast imaging in biomedical optics. J Biomed Opt 2010; 15 (01) 011109
  • 69 Morris SJ, Shore AC. Skin blood flow responses to the iontophoresis of acetylcholine and sodium nitroprusside in man: possible mechanisms. J Physiol 1996; 496 (Pt 2): 531-542
  • 70 Blaauw J, Graaff R, van Pampus MG. et al. Abnormal endothelium-dependent microvascular reactivity in recently preeclamptic women. Obstet Gynecol 2005; 105 (03) 626-632
  • 71 Murphy MSQ, Vignarajah M, Smith GN. Increased microvascular vasodilation and cardiovascular risk following a pre-eclamptic pregnancy. Physiol Rep 2014; 2 (11) e12217
  • 72 Spaan JJ, Houben AJHM, Musella A, Ekhart T, Spaanderman ME, Peeters LL. Insulin resistance relates to microvascular reactivity 23 years after preeclampsia. Microvasc Res 2010; 80 (03) 417-421
  • 73 Ciftci FC, Caliskan M, Ciftci O. et al. Impaired coronary microvascular function and increased intima-media thickness in preeclampsia. J Am Soc Hypertens 2014; 8 (11) 820-826
  • 74 White WM, Mielke MM, Araoz PA. et al. A history of preeclampsia is associated with a risk for coronary artery calcification 3 decades later. Am J Obstet Gynecol 2016; 214 (04) 519.e1-519.e8
  • 75 Benschop L, Schalekamp-Timmermans S, Roeters van Lennep JE. et al. Gestational hypertensive disorders and retinal microvasculature: the Generation R Study. BMC Med 2017; 15 (01) 153
  • 76 Brückmann A, Seeliger C, Lehmann T, Schleußner E, Schlembach D. Altered retinal flicker response indicates microvascular dysfunction in women with preeclampsia. Hypertension 2015; 66 (04) 900-905
  • 77 Irani RA, Xia Y. Renin angiotensin signaling in normal pregnancy and preeclampsia. Semin Nephrol 2011; 31 (01) 47-58
  • 78 Wallukat G, Homuth V, Fischer T. et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 1999; 103 (07) 945-952
  • 79 Stanhewicz AE. Residual vascular dysfunction in women with a history of preeclampsia. Am J Physiol Regul Integr Comp Physiol 2018; 315 (06) R1062-R1071
  • 80 Stanhewicz AE, Jandu S, Santhanam L, Alexander LM. Alterations in endothelin type B receptor contribute to microvascular dysfunction in women who have had preeclampsia. Clin Sci (Lond) 2017; 131 (23) 2777-2789
  • 81 Stanhewicz AE, Jandu S, Santhanam L, Alexander LM. Increased angiotensin II sensitivity contributes to microvascular dysfunction in women who have had preeclampsia. Hypertension 2017; 70 (02) 382-389
  • 82 Stanhewicz AE, Alexander LM. Local angiotensin 1–7 administration improves microvascular endothelial function in women who have had preeclampsia. Am J Physiol Regul Integr Comp Physiol 2019; 318 (01) R148-R155
  • 83 Breetveld NM, Ghossein-Doha C, van Kuijk SMJ. et al. Prevalence of asymptomatic heart failure in formerly pre-eclamptic women: a cohort study. Ultrasound Obstet Gynecol 2017; 49 (01) 134-142
  • 84 Ghossein-Doha C, Spaanderman MEA, Al Doulah R, Van Kuijk SM, Peeters LLH. Maternal cardiac adaptation to subsequent pregnancy in formerly pre-eclamptic women according to recurrence of pre-eclampsia. Ultrasound Obstet Gynecol 2016; 47 (01) 96-103
  • 85 Bergen NE, Schalekamp-Timmermans S, Roos-Hesselink J, Roeters van Lennep JE, Jaddoe VVW, Steegers EAP. Hypertensive disorders of pregnancy and subsequent maternal cardiovascular health. Eur J Epidemiol 2018; 33 (08) 763-771
  • 86 Brewer NT, Chapman GB, Gibbons FX, Gerrard M, McCaul KD, Weinstein ND. Meta-analysis of the relationship between risk perception and health behavior: the example of vaccination. Health Psychol 2007; 26 (02) 136-145
  • 87 Smith GN. The Maternal Health Clinic: improving women's cardiovascular health. Semin Perinatol 2015; 39 (04) 316-319
  • 88 Kingwell BA. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J 2000; 14 (12) 1685-1696
  • 89 Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75 (03) 519-560
  • 90 Pereira T, Correia C, Cardoso J. Novel methods for pulse wave velocity measurement. J Med Biol Eng 2015; 35 (05) 555-565
  • 91 Lehmann ED. Clinical value of aortic pulse-wave velocity measurement. Lancet 1999; 354 (9178): 528-529
  • 92 Nürnberger J, Keflioglu-Scheiber A, Opazo Saez AM, Wenzel RR, Philipp T, Schäfers RF. Augmentation index is associated with cardiovascular risk. J Hypertens 2002; 20 (12) 2407-2414
  • 93 Ashley EA, Niebauer J. Understanding the echocardiogram. In: Cardiology Explained. London: Remedica; 2004
  • 94 Teh I, McClymont D, Zdora M-C. et al. Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging. J Cardiovasc Magn Reson 2017; 19 (01) 31