Thromb Haemost 2021; 121(06): 731-740
DOI: 10.1055/s-0040-1721484
Coagulation and Fibrinolysis

Comparison of the Pharmacokinetic Properties of Extended Half-Life and Recombinant Factor VIII Concentrates by In Silico Simulations

1   Hospital Pharmacy-Clinical Pharmacology, Amsterdam University Medical Center, Amsterdam, The Netherlands
,
Tim Preijers
1   Hospital Pharmacy-Clinical Pharmacology, Amsterdam University Medical Center, Amsterdam, The Netherlands
,
Max W. F. van Spengler
1   Hospital Pharmacy-Clinical Pharmacology, Amsterdam University Medical Center, Amsterdam, The Netherlands
,
Frank W. G. Leebeek
2   Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
,
Marjon H. Cnossen*
3   Department of Pediatric Hematology, Erasmus University Medical Center—Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands
,
Ron A. A. Mathôt*
1   Hospital Pharmacy-Clinical Pharmacology, Amsterdam University Medical Center, Amsterdam, The Netherlands
› Author Affiliations
Funding This study was investigator-initiated and was supported with a unrestricted research grant from Bayer (Mijdrecht, The Netherlands) and Swedish Orphan Biovitrum AB (SOBI, Stockholm, Sweden).

Abstract

Background The pharmacokinetic (PK) properties of extended half-life (EHL) factor VIII (FVIII) concentrates differ, leading to variation in the optimal dosing regimen for the individual patient. The aim of this study was to establish these PK differences for various EHL FVIII concentrates by in silico simulations.

Methods FVIII level over time profiles of rFVIII-SC, BAY 81–8973, rFVIII-Fc, BAX 855, BAY 94–9027, and standard half-life (SHL) rFVIII concentrates were simulated for 1,000 severe hemophilia A patients during steady-state dosing of 40 IU/kg every 72 hours or dosing as advised in the summary of product characteristics (SmPC).

Results Although the elimination half-life values were comparable for rFVIII-FC, BAX 855, and BAY 94–9027, a higher area under the curve (AUC; 2,779 IU/h/dL) for BAY 94–9027 was obtained. During steady-state dosing of 40 IU/kg every 72 hours, 58.5% (rFVIII-SC), 69.3% (BAY 81–8972), 89.0% (rFVIII-Fc), 83.9% (BAX 855), and 93.7% (BAY 94–9027) of the patients maintained a trough level of 1 IU/dL, compared with 56.0% for SHL rFVIII. Following dosing schemes described in the SmPC, between 51.0 and 65.4% or 23.2 and 31.1% of the patients maintained a target trough level of 1 IU/dL or 3 IU/dL, respectively.

Conclusion BAY 94–9027 showed the largest increase of AUC and best target attainment compared with SHL rFVIII, followed closely by BAX 855 and rFVIII-Fc. BAY 81–8973 and rFVIII-SC showed smaller PK improvements. Although our analyses increase insight into the PK of these FVIII concentrates, more studies evaluating the relation between factor levels and bleeding risk are needed.

Authors' Contributions

L.H.B., T.P., and M.W.F.S. performed the pharmacokinetic analyses. L.H.B. wrote the manuscript. R.A.A.M. and M.H.C. supervised the study, while F.W.G.L. gave critical guidance. All authors contributed substantially to the critical revision of the manuscript and approved the final draft of the manuscript.


* Both are last authors.


Supplementary Material



Publication History

Received: 04 September 2020

Accepted: 27 October 2020

Article published online:
27 January 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Srivastava A, Santagostino E, Dougall A. et al. WFH guidelines for the management of hemophilia, 3rd edition. Haemophilia 2020; 26 (Suppl. 06) 1-158
  • 2 Preijers T, Schütte LM, Kruip MJHA. et al. Strategies for individualized dosing of clotting factor concentrates and desmopressin in hemophilia A and B. Ther Drug Monit 2019; 41 (02) 192-212
  • 3 Croteau SE, Callaghan MU, Davis J. et al. Focusing in on use of pharmacokinetic profiles in routine hemophilia care. Res Pract Thromb Haemost 2018; 2 (03) 607-614
  • 4 Nederlof A, Mathôt RAA, Leebeek FWG, Fijnvandraat K, Fischer K, Cnossen MH. “OPTI-CLOT” study group. Positioning extended half-life concentrates for future use: a practical proposal. Haemophilia 2018; 24 (05) e369-e372
  • 5 Collins P, Chalmers E, Chowdary P. et al. The use of enhanced half-life coagulation factor concentrates in routine clinical practice: guidance from UKHCDO. Haemophilia 2016; 22 (04) 487-498
  • 6 Björkman S, Berntorp E. Pharmacokinetics of coagulation factors: clinical relevance for patients with haemophilia. Clin Pharmacokinet 2001; 40 (11) 815-832
  • 7 Powell JS, Josephson NC, Quon D. et al. Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients. Blood 2012; 119 (13) 3031-3037
  • 8 Konkle BA, Stasyshyn O, Chowdary P. et al. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood 2015; 126 (09) 1078-1085
  • 9 Shah A, Coyle T, Lalezari S. et al. BAY 94-9027, a PEGylated recombinant factor VIII, exhibits a prolonged half-life and higher area under the curve in patients with severe haemophilia A: Comprehensive pharmacokinetic assessment from clinical studies. Haemophilia 2018; 24 (05) 733-740
  • 10 Graf L. Extended half-life factor VIII and factor IX preparations. Transfus Med Hemother 2018; 45 (02) 86-91
  • 11 Mahlangu J, Young G, Hermans C, Blanchette V, Berntorp E, Santagostino E. Defining extended half-life rFVIII-A critical review of the evidence. Haemophilia 2018; 24 (03) 348-358
  • 12 Björkman S, Oh M, Spotts G. et al. Population pharmacokinetics of recombinant factor VIII: the relationships of pharmacokinetics to age and body weight. Blood 2012; 119 (02) 612-618
  • 13 Hazendonk HCAM, van Moort I, Mathôt RAA. et al; OPTI-CLOT study group. Setting the stage for individualized therapy in hemophilia: what role can pharmacokinetics play?. Blood Rev 2018; 32 (04) 265-271
  • 14 Carcao MD, Chelle P, Clarke E. et al. Comparative pharmacokinetics of two extended half-life FVIII concentrates (Eloctate and Adynovate) in adolescents with hemophilia A: is there a difference?. J Thromb Haemost 2019; 17 (07) 1085-1096
  • 15 Shah A, Solms A, Wiegmann S. et al. Direct comparison of two extended-half-life recombinant FVIII products: a randomized, crossover pharmacokinetic study in patients with severe hemophilia A. Ann Hematol 2019; 98 (09) 2035-2044
  • 16 Solms A, Shah A, Berntorp E. et al. Direct comparison of two extended half-life PEGylated recombinant FVIII products: a randomized, crossover pharmacokinetic study in patients with severe hemophilia A. Ann Hematol 2020; 99 (11) 2689-2698
  • 17 Bukkems LH, Heijdra JM, Mathias M. et al; for UK-EHL Outcomes Registry OPTI-CLOT Collaboration. A novel, enriched population pharmacokinetic model for recombinant factor VIII-Fc fusion protein concentrate in hemophilia A patients. Thromb Haemost 2020; 120 (05) 747-757
  • 18 Garmann D, McLeay S, Shah A, Vis P, Maas Enriquez M, Ploeger BA. Population pharmacokinetic characterization of BAY 81-8973, a full-length recombinant factor VIII: lessons learned - importance of including samples with factor VIII levels below the quantitation limit. Haemophilia 2017; 23 (04) 528-537
  • 19 Chelle P, Yeung CHT, Croteau SE. et al. Development and validation of a population-pharmacokinetic model for rurioctacog alfa pegol (Adynovate®): a report on behalf of the WAPPS-Hemo Investigators Ad Hoc Subgroup. Clin Pharmacokinet 2020; 59 (02) 245-256
  • 20 Zhang Y, Roberts J, Tortorici M. et al. Population pharmacokinetics of recombinant coagulation factor VIII-SingleChain in patients with severe hemophilia A. J Thromb Haemost 2017; 15 (06) 1106-1114
  • 21 Solms A, Iorio A, Ahsman MJ. et al. Favorable pharmacokinetic characteristics of extended-half-life recombinant factor VIII BAY 94-9027 enable robust individual profiling using a population pharmacokinetic approach. Clin Pharmacokinet 2020; 59 (05) 605-616
  • 22 Coppola R, Mari D, Lattuada A, Franceschi C. Von Willebrand factor in Italian centenarians. Haematologica 2003; 88 (01) 39-43
  • 23 Vischer UM, Herrmann FR, Peyrard T, Nzietchueng R, Benetos A. Plasma von Willebrand factor and arterial aging. J Thromb Haemost 2005; 3 (04) 794-795
  • 24 Sanders YV, Giezenaar MA, Laros-van Gorkom BAP. et al; WiN study group. von Willebrand disease and aging: an evolving phenotype. J Thromb Haemost 2014; 12 (07) 1066-1075
  • 25 Albanez S, Ogiwara K, Michels A, Hopman W, Grabell J, James PLD. Aging and ABO blood type influence VWF and FVIII levels through interrelated mechanisms. J Thromb Haemost 2016; 14: 953-963
  • 26 Atiq F, Meijer K, Eikenboom J. et al; WiN study group. Comorbidities associated with higher von Willebrand factor (VWF) levels may explain the age-related increase of VWF in von Willebrand disease. Br J Haematol 2018; 182 (01) 93-105
  • 27 Rydz N, Grabell J, Lillicrap D, James PD. Changes in von Willebrand factor level and von Willebrand activity with age in type 1 von Willebrand disease. Haemophilia 2015; 21 (05) 636-641
  • 28 Biguzzi E, Siboni SM, le Cessie S. et al. Increasing levels of von Willebrand factor and factor VIII with age in patients affected by von Willebrand disease. J Thromb Haemost 2021; 19 (01) 96-106
  • 29 Kadir RA, Economides DL, Sabin CA, Owens D, Lee CA. Variations in coagulation factors in women: effects of age, ethnicity, menstrual cycle and combined oral contraceptive. Thromb Haemost 1999; 82 (05) 1456-1461
  • 30 Biguzzi E, Castelli F, Lijfering WM, Cannegieter SC, Eikenboom J, Rosendaal FR, Hylckama Vlieg A. Rise of levels of von Willebrand factor and factor VIII with age: Role of genetic and acquired risk factors. Throm Research 2021; 197: 172-178
  • 31 Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet 2005; 44 (10) 1051-1065
  • 32 Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 1991; 65 (02) 105-114
  • 33 ELOCTA. , Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/elocta-epar-product-information_en.pdf 2019
  • 34 Advate, Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/advate-epar-product-information_en.pdf 2020
  • 35 Afstyla, Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/afstyla-epar-product-information_en.pdf 2019
  • 36 Kovaltry, Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/kovaltry-epar-product-information_en.pdf 2020
  • 37 Adynovi, Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/adynovi-epar-product-information_en.pdf 2019
  • 38 Jivi, Summary of Product Characteristics. Available at: https://www.ema.europa.eu/en/documents/product-information/jivi-epar-product-information_en.pdf 2020
  • 39 Iorio A, Iserman E, Blanchette V. et al. Target plasma factor levels for personalized treatment in haemophilia: a Delphi consensus statement. Haemophilia 2017; 23 (03) e170-e179
  • 40 Collins PW, Blanchette VS, Fischer K. et al; rAHF-PFM Study Group. Break-through bleeding in relation to predicted factor VIII levels in patients receiving prophylactic treatment for severe hemophilia A. J Thromb Haemost 2009; 7 (03) 413-420
  • 41 Mahlangu J, Powell JS, Ragni MV. et al; A-LONG Investigators. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood 2014; 123 (03) 317-325
  • 42 Chhabra ES, Liu T, Kulman J. et al. Developing BIVV001, a new class of factor VIII replacement for hemophilia A that is von Willebrand factor-independent. Blood 2020; 135: 1484-1496
  • 43 Stafford DW. Extravascular FIX and coagulation. Thromb J 2016; 14 (Suppl. 01) 35
  • 44 Gray E, Kitchen S, Bowyer A. et al. Laboratory measurement of factor replacement therapies in the treatment of congenital haemophilia: a United Kingdom Haemophilia Centre Doctors' Organisation guideline. Haemophilia 2020; 26 (01) 6-16
  • 45 Young GA, Perry DJ. International Prophylaxis Study Group (IPSG). Laboratory assay measurement of modified clotting factor concentrates: a review of the literature and recommendations for practice. J Thromb Haemost 2019; 17 (04) 567-573
  • 46 van Moort I, Meijer P, Priem-Visser D. et al. Analytical variation in factor VIII one-stage and chromogenic assays: experiences from the ECAT external quality assessment programme. Haemophilia 2019; 25 (01) 162-169