CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2021; 08(03): 163-172
DOI: 10.1055/s-0040-1721165
Review Article

Pathophysiology of Cerebral Edema—A Comprehensive Review

Tara Dalby
1   Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
,
Elyana Wohl
2   Department of Anesthesia, Notre-Dame Hospital, Montreal, Quebec, Canada
,
Michael Dinsmore
1   Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
,
Zoe Unger
1   Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
,
Tumul Chowdhury
1   Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
,
Lakshmikumar Venkatraghavan
1   Department of Anesthesia and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Ontario, Canada
› Author Affiliations

Abstract

Cerebral edema is a condition where an excess of cerebral water accumulates due to primary neurological or non-neurological causes. Cerebral edema complicates many brain pathologies causing additional injury often in excess of the original neurological insult. Classic descriptions divide cerebral edema into cytotoxic, vasogenic, interstitial, and osmotic subtypes. The interplay of different mechanisms is important in the clinical manifestations. Recent research has advanced our understanding of the molecular pathophysiology of cerebral edema, exposing the central role of aquaporins and specific ion channels. The aim of this review is to provide a comprehensive overview of the molecular pathophysiology of cerebral edema including unique disease specific mechanisms.

Supplementary Material



Publication History

Article published online:
03 December 2020

© 2020. Indian Society of Neuroanaesthesiology and Critical Care. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Thrane AS, Rangroo Thrane V, Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci 2014; 37 (11) 620-628
  • 2 Nakada T, Kwee IL. Fluid dynamics inside the brain barrier: current concept of interstitial flow, glymphatic flow, and cerebrospinal fluid circulation in the brain. Neuroscientist 2019; 25 (02) 155-166
  • 3 Pillinger NL, Kam P. Endothelial glycocalyx: basic science and clinical implications. Anaesth Intensive Care 2017; 45 (03) 295-307
  • 4 Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 2012; 108 (03) 384-394
  • 5 Ando Y, Okada H, Takemura G. et al Brain-specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci Rep 2018; 8 (01) 17523
  • 6 Zhu J, Li X, Yin J, Hu Y, Gu Y, Pan S. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats. J Cereb Blood Flow Metab 2018; 38 (11) 1979-1992
  • 7 Keep RF, Andjelkovic AV, Xiang J. et al Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab 2018; 38 (08) 1255-1275
  • 8 Nakada T, Kwee IL, Igarashi H, Suzuki Y. Aquaporin-4 functionality and Virchow-Robin space water dynamics: physiological model for neurovascular coupling and glymphatic flow. Int J Mol Sci 2017; 18 (08) 1798
  • 9 Monro A. Observations on the Structure and Function of the Nervous System. Edinburgh: Creech & Johnson 1823
  • 10 Morris AWJ, Sharp MM, Albargothy NJ. et al Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 2016; 131 (05) 725-736
  • 11 Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018; 17 (11) 1016-1024
  • 12 Tang G, Yang GY. Aquaporin-4: a potential therapeutic target for cerebral edema. Int J Mol Sci 2016; 17 (10) E1413
  • 13 Fukuda AM, Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation 2012; 9: 279
  • 14 Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016; 36 (03) 513-538
  • 15 Mahajan S, Bhagat H. Cerebral oedema: pathophysiological mechanisms and experimental therapies. J Neuroanaesth Crit Care 2016; 3: 22-28
  • 16 Clément T, Rodriguez-Grande B, Badaut J. Aquaporins in brain edema. J Neurosci Res 2020; 98 (01) 9-18
  • 17 Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth 2007; 99 (01) 4-9
  • 18 Young W, Rappaport ZH, Chalif DJ, Flamm ES. Regional brain sodium, potassium, and water changes in the rat middle cerebral artery occlusion model of ischemia. Stroke 1987; 18 (04) 751-759
  • 19 Michinaga S, Koyama Y. Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 2015; 16 (05) 9949-9975
  • 20 Hsu Y, Tran M, Linninger AA. Dynamic regulation of aquaporin-4 water channels in neurological disorders. Croat Med J 2015; 56 (05) 401-421
  • 21 Manley GT, Fujimura M, Ma T. et al Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 2000; 6 (02) 159-163
  • 22 Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J Biol Chem 2013; 288 (05) 3655-3667
  • 23 Simard JM, Woo SK, Gerzanich V. Transient receptor potential melastatin 4 and cell death. Pflugers Arch 2012; 464 (06) 573-582
  • 24 Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab 2012; 32 (09) 1699-1717
  • 25 Stokum JA, Kwon MS, Woo SK. et al SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 2018; 66 (01) 108-125
  • 26 Mehta RI, Tosun C, Ivanova S. et al Sur1-Trpm4 cation channel expression in human cerebral infarcts. J Neuropathol Exp Neurol 2015; 74 (08) 835-849
  • 27 Ayata C, Ropper AH. Ischaemic brain oedema. J Clin Neurosci 2002; 9 (02) 113-124
  • 28 Kuroiwa T, Miyasaka N, Fengyo Z. et al Experimental ischemic brain edema: morphological and magnetic resonance imaging findings. Neurosurg Focus 2007; 22 (05) E11
  • 29 Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2019; 145 (Pt B) 230-246
  • 30 Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 2010; 23 (03) 293-299
  • 31 Winkler EA, Minter D, Yue JK, Manley GT. Cerebral edema in traumatic brain injury pathophysiology and prospective therapeutic targets. Neurosurg Clin N Am 2016; 27 (04) 473-488
  • 32 Sorby-Adams AJ, Marcoionni AM, Dempsey ER, Woenig JA, Turner RJ. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury. Int J Mol Sci 2017; 18 (08) 1788
  • 33 Stocchetti N, Maas AI. Traumatic intracranial hypertension. N Engl J Med 2014; 370 (22) 2121-2130
  • 34 Gorse KM, Lantzy MK, Lee ED, Lafrenaye AD. Transient receptor potential melastatin 4 induces astrocyte swelling but not death after diffuse traumatic brain injury. J Neurotrauma 2018; 35 (14) 1694-1704
  • 35 Volbers B, Giede-Jeppe A, Gerner ST. et al Peak perihemorrhagic edema correlates with functional outcome in intracerebral hemorrhage. Neurology 2018; 90 (12) e1005-e1012
  • 36 Ironside N, Chen CJ, Ding D. Mayer SA, Connolly ES Jr. Perihematomal edema after spontaneous intracerebral hemorrhage. Stroke 2019; 50 (06) 1626-1633
  • 37 Zheng H, Chen C, Zhang J, Hu Z. Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Dis 2016; 42 (3-4) 155-169
  • 38 Yehya M, Torbey MT. The role of mast cells in intracerebral hemorrhage. Neurocrit Care 2018; 28 (03) 288-295
  • 39 Bodmer D, Vaughan KA, Zacharia BE, Hickman ZL, Connolly ES. The molecular mechanisms that promote edema after intracerebral hemorrhage. Transl Stroke Res 2012; 3, Suppl 1) 52-61
  • 40 Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 2012; 97 (01) 14-37
  • 41 Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke 2002; 33 (05) 1225-1232
  • 42 Weimer JM, Jones SE, Frontera JA. Acute cytotoxic and vasogenic edema after subarachnoid hemorrhage: a quantitative MRI study. Am J Neuroradiol 2017; 38 (05) 928-934
  • 43 Hayman EG, Wessell A, Gerzanich V, Sheth KN, Simard JM. Mechanisms of global cerebral edema formation in aneurysmal subarachnoid hemorrhage. Neurocrit Care 2017; 26 (02) 301-310
  • 44 Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2006; 26 (11) 1341-1353
  • 45 Tosun C, Kurland DB, Mehta R. et al Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke 2013; 44 (12) 3522-3528
  • 46 Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 2014; 10 (01) 44-58
  • 47 Østergaard L, Aamand R, Karabegovic S. et al The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2013; 33 (12) 1825-1837
  • 48 Ahn SH, Savarraj JP, Pervez M. et al The subarachnoid hemorrhage early brain edema score predicts delayed cerebral ischemia and clinical outcomes. Neurosurgery 2018; 83 (01) 137-145
  • 49 Murayi R, Chittiboina P. Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms. Childs Nerv Syst 2016; 32 (12) 2293-2302
  • 50 Heiss JD, Papavassiliou E, Merrill MJ. et al Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J Clin Invest 1996; 98 (06) 1400-1408
  • 51 Stummer W. Mechanisms of tumor-related brain edema. Neurosurg Focus 2007; 22 (05) E8
  • 52 Gerstner ER, Duda DG, di Tomaso E. et al VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 2009; 6 (04) 229-236
  • 53 Dubois LG, Campanati L, Righy C. et al Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci 2014; 8: 418
  • 54 Reulen HJ, Graber S, Huber P, Ito U. Factors affecting the extension of peritumoural brain oedema. A CT-study. Acta Neurochir (Wien) 1988; 95 (1-2) 19-24
  • 55 Papadopoulos MC, Saadoun S. Key roles of aquaporins in tumor biology. Biochim Biophys Acta 2015; 1848 (10 Pt B) 2576-2583
  • 56 Scott TR, Kronsten VT, Hughes RD, Shawcross DL. Pathophysiology of cerebral oedema in acute liver failure. World J Gastroenterol 2013; 19 (48) 9240-9255
  • 57 Paschoal FM Junior, Nogueira RC, Oliveira ML. et al Cerebral hemodynamic and metabolic changes in fulminant hepatic failure. Arq Neuropsiquiatr 2017; 75 (07) 470-476
  • 58 Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 2006; 44 (04) 788-794
  • 59 Nguyen JH. Blood-brain barrier in acute liver failure. Neurochem Int 2012; 60 (07) 676-683
  • 60 Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care 2017; 21 (01) 90
  • 61 Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin 2006; 24 (01) 1-21
  • 62 Rhee CJ, da CS Costa, Austin T, Brady KM, Czosnyka M, Lee JK. Neonatal cerebrovascular autoregulation. Pediatr Res 2018; 84 (05) 602-610
  • 63 Sagoo RS, Hutchinson CE, Wright A. et al Birmingham Medical Research and Expedition Society. Magnetic Resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema. J Cereb Blood Flow Metab 2017; 37 (01) 319-331
  • 64 Hackett PH, Roach RC. High-altitude illness. N Engl J Med 2001; 345 (02) 107-114
  • 65 Hackett PH, Yarnell PR, Weiland DA, Reynard KB. Acute and evolving MRI of high-altitude cerebral edema: microbleeds, edema, and pathophysiology. AJNR Am J Neuroradiol 2019; 40 (03) 464-469