Semin Musculoskelet Radiol 2020; 24(06): 676-691
DOI: 10.1055/s-0040-1721097
Review Article

Therapy-Related Imaging Findings in Patients with Sarcoma

Johan L. Bloem
1   Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
,
Dennis Vriens
1   Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
,
Augustinus D.G. Krol
2   Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
,
Murat Özdemir
1   Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
,
Michiel A.J. van de Sande
3   Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
,
Hans Gelderblom
4   Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
,
Judith V.M.G. Bovee
5   Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
,
Jos A. van der Hage
6   Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
,
Iris M. Noebauer-Huhmann
7   Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
› Author Affiliations

Abstract

Knowledge of imaging findings related to therapy administered to patients with sarcoma is pivotal in selecting appropriate care for these patients. Imaging studies are performed as surveillance in asymptomatic patients or because symptoms, including anxiety, develop. In addition to detection of recurrent disease and assessment of response to therapy, diagnosis of conditions related to therapy that may or may not need treatment has a marked positive impact on quality of life. The purpose of this review is to assist radiologists, nuclear physicians, and others clinicians involved in the diagnosis and treatment of these patients in recognizing imaging findings related to therapy and not to activity of the previously treated sarcoma. Imaging findings are time dependent and often specific in relation to therapy given.



Publication History

Article published online:
11 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Noebauer-Huhmann IM, Grieser T. Soft tissue sarcoma: how can posttreatment alterations be distinguished from recurrences?. [in German]. Radiologe 2017; 57 (11) 923-937
  • 2 Capps GW, Fulcher AS, Szucs RA, Turner MA. Imaging features of radiation-induced changes in the abdomen. Radiographics 1997; 17 (06) 1455-1473
  • 3 Bluemke DA, Fishman EK, Scott Jr WW. Skeletal complications of radiation therapy. Radiographics 1994; 14 (01) 111-121
  • 4 van Wulfften Palthe O, Jee KW, Bramer JAM, Hornicek FJ, Chen YE, Schwab JH. What is the effect of high-dose radiation on bone in patients with sacral chordoma? A CT study. Clin Orthop Relat Res 2018; 476 (03) 520-528
  • 5 Snider JW, Schneider RA, Poelma-Tap D. et al. Long-term outcomes and prognostic factors after pencil-beam scanning proton radiation therapy for spinal chordomas: a large, single-institution cohort. Int J Radiat Oncol Biol Phys 2018; 101 (01) 226-233
  • 6 Epler GR, Kelly EM. Systematic review of postradiotherapy bronchiolitis obliterans organizing pneumonia in women with breast cancer. Oncologist 2014; 19 (12) 1216-1226
  • 7 Garner HW, Kransdorf MJ, Bancroft LW, Peterson JJ, Berquist TH, Murphey MD. Benign and malignant soft-tissue tumors: posttreatment MR imaging. Radiographics 2009; 29 (01) 119-134
  • 8 Juweid ME, Stroobants S, Hoekstra OS. Imaging Subcommittee of International Harmonization Project in Lymphoma. et al; Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 2007; 25 (05) 571-578
  • 9 Choi YW, Munden RF, Erasmus JJ. et al. Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. Radiographics 2004; 24 (04) 985-997 ; discussion 998
  • 10 Shen G, Liang M, Su M, Kuang A. Physiological uptake of 18F-FDG in the vertebral bone marrow in healthy adults on PET/CT imaging. Acta Radiol 2018; 59 (12) 1487-1493
  • 11 Saini A, Saifuddin A. MRI of osteonecrosis. Clin Radiol 2004; 59 (12) 1079-1093
  • 12 Ilaslan H, Schils J, Joyce M, Shah C, Zhang Y. Radiation-induced focal cortical necrosis of the femur presenting as a lytic lesion. Skeletal Radiol 2017; 46 (11) 1579-1584
  • 13 Osler P, Bredella MA, Hess KA. et al. Sacral insufficiency fractures are common after high-dose radiation for sacral chordomas treated with or without surgery. Clin Orthop Relat Res 2016; 474 (03) 766-772
  • 14 Bostel T, Nicolay NH, Welzel T. et al. Sacral insufficiency fractures after high-dose carbon-ion based radiotherapy of sacral chordomas. Radiat Oncol 2018; 13 (01) 154
  • 15 Hwang S, Lefkowitz R, Landa J. et al. Local changes in bone marrow at MRI after treatment of extremity soft tissue sarcoma. Skeletal Radiol 2009; 38 (01) 11-19
  • 16 Chong A, Song HC, Oh JR. et al. Gelatinous degeneration of the bone marrow mimicking osseous metastasis on 18F-FDG PET/CT. Clin Nucl Med 2012; 37 (08) 798-800
  • 17 Jackson TJ, Mostoufi-Moab S, Hill-Kayser C, Balamuth NJ, Arkader A. Musculoskeletal complications following total body irradiation in hematopoietic stem cell transplant patients. Pediatr Blood Cancer 2018;65(04):
  • 18 Mitchell MJ, Logan PM. Radiation-induced changes in bone. Radiographics 1998; 18 (05) 1125-1136 ; quiz 1242–1243
  • 19 Taitz J, Cohn RJ, White L, Russell SJ, Vowels MR. Osteochondroma after total body irradiation: an age-related complication. Pediatr Blood Cancer 2004; 42 (03) 225-229
  • 20 Swerdlow AJ, Higgins CD, Smith P. et al. Second cancer risk after chemotherapy for Hodgkin's lymphoma: a collaborative British cohort study. J Clin Oncol 2011; 29 (31) 4096-4104
  • 21 Schaapveld M, Aleman BM, van Eggermond AM. et al. Second cancer risk up to 40 years after treatment for Hodgkin's lymphoma. N Engl J Med 2015; 373 (26) 2499-2511
  • 22 Hudson MM, Ness KK, Gurney JG. et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA 2013; 309 (22) 2371-2381
  • 23 Patel SR. Radiation-induced sarcoma. Curr Treat Options Oncol 2000; 1 (03) 258-261
  • 24 Altehoefer C, Laubenberger J, Lange W. et al. Prospective evaluation of bone marrow signal changes on magnetic resonance tomography during high-dose chemotherapy and peripheral blood stem cell transplantation in patients with breast cancer. Invest Radiol 1997; 32 (10) 613-620
  • 25 Gu L, Madewell JE, Aslam R, Mujtaba B. The effects of granulocyte colony-stimulating factor on MR images of bone marrow. Skeletal Radiol 2019; 48 (02) 209-218
  • 26 Jacene HA, Ishimori T, Engles JM, Leboulleux S, Stearns V, Wahl RL. Effects of pegfilgrastim on normal biodistribution of 18F-FDG: preclinical and clinical studies. J Nucl Med 2006; 47 (06) 950-956
  • 27 Boellaard R, Delgado-Bolton R, Oyen WJ. European Association of Nuclear Medicine (EANM). et al; FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015; 42 (02) 328-354
  • 28 Bosma SE, Vriens D, Gelderblom H, van de Sande MAJ, Dijkstra PDS, Bloem JL. 18F-FDG PET-CT versus MRI for detection of skeletal metastasis in Ewing sarcoma. Skeletal Radiol 2019; 48 (11) 1735-1746
  • 29 Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration. Skeletal Radiol 1997; 26 (07) 414-418
  • 30 Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 2011; 261 (03) 700-718
  • 31 Howard EL, Shepherd KL, Cribb G, Cool P. The validity of the Mirels score for predicting impending pathological fractures of the lower limb. Bone Joint J 2018; 100-B (08) 1100-1105
  • 32 Hobusch GM, Noebauer-Huhmann I, Krall C, Holzer G. Do long term survivors of Ewing family of tumors experience low bone mineral density and increased fracture risk?. Clin Orthop Relat Res 2014; 472 (11) 3471-3479
  • 33 Vanel D, Bonvalot S, Pechoux CL, Cioffi A, Domont J, Cesne AL. Imatinib-induced bone marrow necrosis detected on MRI examination and mimicking bone metastases. Skeletal Radiol 2007; 36 (09) 895-898
  • 34 Karmazyn B, Cohen MD, Jennings SG, Robertson KA. Marrow signal changes observed in follow-up whole-body MRI studies in children and young adults with neurofibromatosis type 1 treated with imatinib mesylate (Gleevec) for plexiform neurofibromas. Pediatr Radiol 2012; 42 (10) 1218-1222
  • 35 van Langevelde K, McCarthy CL. Radiological findings of denosumab treatment for giant cell tumours of bone. Skeletal Radiol 2020; 49 (09) 1345-1358
  • 36 Hakozaki M, Tajino T, Yamada H. et al. Radiological and pathological characteristics of giant cell tumor of bone treated with denosumab. Diagn Pathol 2014; 9: 111
  • 37 Errani C, Tsukamoto S, Leone G. et al. Denosumab may increase the risk of local recurrence in patients with giant-cell tumor of bone treated with curettage. J Bone Joint Surg Am 2018; 100 (06) 496-504
  • 38 Zhang Y, Ilaslan H, Krishnaney AA, Bauer TW. Morphological transformation of giant-cell tumor of bone after treatment with denosumab: a case report. JBJS Case Connect 2016; 6 (03) e74
  • 39 Black DM, Abrahamsen B, Bouxsein ML, Einhorn T, Napoli N. Atypical femur fractures: review of epidemiology, relationship to bisphosphonates, prevention, and clinical management. Endocr Rev 2019; 40 (02) 333-368
  • 40 Fleisher KE, Pham S, Raad RA. et al. Does fluorodeoxyglucose positron emission tomography with computed tomography facilitate treatment of medication-related osteonecrosis of the jaw?. J Oral Maxillofac Surg 2016; 74 (05) 945-958
  • 41 Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Relat Res 1987; (225) 7-16
  • 42 Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res 1983; (174) 28-42
  • 43 Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ, Menke DM, DeOrio JK. Imaging characteristics of bone graft materials. Radiographics 2006; 26 (02) 373-388
  • 44 van de Sande MA, van Geldorp NH, Dijkstra PD, Taminiau AH. Surgical technique: tibia cortical strut autograft interposition arthrodesis after distal radius resection. Clin Orthop Relat Res 2013; 471 (03) 803-813
  • 45 Hilven PH, Bayliss L, Cosker T. et al. The vascularised fibular graft for limb salvage after bone tumour surgery: a multicentre study. Bone Joint J 2015; 97-B (06) 853-861
  • 46 Kattapuram SV, Rosol MS, Rosenthal DI, Palmer WE, Mankin HJ. Magnetic resonance imaging features of allografts. Skeletal Radiol 1999; 28 (07) 383-389
  • 47 Van Laere K, Casier K, Uyttendaele D. et al. Technetium-99m-MDP scintigraphy and long-term follow-up of treated primary malignant bone tumors. J Nucl Med 1998; 39 (09) 1563-1569
  • 48 Vriens D, Arens AI, de Rooy JW, Schreuder BH, Brons PP, Gotthardt M. Hardware failure: a potential pitfall in assessing recurrent Ewing's sarcoma on bone scintigraphy. Clin Nucl Med 2010; 35 (06) 430-433
  • 49 Jelinek JS, Kransdorf MJ, Moser RP, Temple HT, Lenhart MK, Berrey BH. MR imaging findings in patients with bone-chip allografts. AJR Am J Roentgenol 1990; 155 (06) 1257-1260
  • 50 Bus MP, Dijkstra PD, van de Sande MA. et al. Intercalary allograft reconstructions following resection of primary bone tumors: a nationwide multicenter study. J Bone Joint Surg Am 2014; 96 (04) e26
  • 51 Bus MP, Bramer JA, Schaap GR. et al. Hemicortical resection and inlay allograft reconstruction for primary bone tumors: a retrospective evaluation in the Netherlands and review of the literature. J Bone Joint Surg Am 2015; 97 (09) 738-750
  • 52 Vanderschueren GM, Taminiau AH, Obermann WR, van den Berg-Huysmans AA, Bloem JL, van Erkel AR. The healing pattern of osteoid osteomas on computed tomography and magnetic resonance imaging after thermocoagulation. Skeletal Radiol 2007; 36 (09) 813-821
  • 53 Kamath S, Venkatanarasimha N, Walsh MA, Hughes PM. MRI appearance of muscle denervation. Skeletal Radiol 2008; 37 (05) 397-404
  • 54 Jeffree GM, Price CH, Sissons HA. The metastatic patterns of osteosarcoma. Br J Cancer 1975; 32 (01) 87-107
  • 55 Chowdhury FU, Sheerin F, Bradley KM, Gleeson FV. Sarcoid-like reaction to malignancy on whole-body integrated (18)F-FDG PET/CT: prevalence and disease pattern. Clin Radiol 2009; 64 (07) 675-681
  • 56 Aide N, Allouache D, Ollivier Y, de Raucourt S, Switsers O, Bardet S. Early 2′-deoxy-2′-[18F]fluoro-D-glucose PET metabolic response after corticosteroid therapy to differentiate cancer from sarcoidosis and sarcoid-like lesions. Mol Imaging Biol 2009; 11 (04) 224-228