CC BY-NC-ND 4.0 · Synlett 2022; 33(09): 875-878
DOI: 10.1055/s-0040-1720924
cluster
Mechanochemistry

Triazole-Extended Anthracenes as Optical Force Probes

a   DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
b   Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
,
Robert Göstl
a   DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
› Institutsangaben
C.B. and R.G. are grateful for support by a Freigeist-Fellowship of the Volkswagen Foundation (92888). Parts of the analytical investigations were performed at the Center for Chemical Polymer Technology CPT, which was supported by the European Commission and the federal state of North Rhine-Westphalia (300088302). Financial support is acknowledged from the European Commission (EUSMI, 731019).


Abstract

Optical force probes (OFPs) are force-responsive molecules that report on mechanically induced transformations by the alteration of their optical properties. Yet, their modular design and incorporation into polymer architectures at desired positions is challenging. Here we report triazole-extended anthracene OFPs that combine two modular ‘click’ reactions in their synthesis potentially allowing their incorporation at desirable positions in complex polymer materials. Importantly, these retain the excellent optical properties of their parent 9-π-extended anthracene OFP counterparts.

Supporting Information

Primary Data



Publikationsverlauf

Eingereicht: 11. August 2021

Angenommen nach Revision: 16. September 2021

Artikel online veröffentlicht:
14. Oktober 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 O’Neill RT, Boulatov R. Nat. Rev. Chem. 2021; 5: 148
  • 2 Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Chem. Soc. Rev. 2021; 50: 4100
  • 3 Yuan Y, Yuan W, Chen Y. Sci. China Mater. 2016; 59: 507
  • 4 Göstl, R.; Clough, J. M.; Sijbesma, R. P. In Mechanochemistry in Materials Craig S. L.; Royal Society of Chemistry, London, 2017; 53.
  • 5 Traeger H, Kiebala DJ, Weder C, Schrettl S. Macromol. Rapid Commun. 2021; 42: 2000573
  • 6 Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, Potisek SL, Ong MT, Braun PV, Martínez TJ, White SR, Moore JS, Sottos NR. Nature 2009; 459: 68
  • 7 Li J, Nagamani C, Moore JS. Acc. Chem. Res. 2015; 48: 2181
  • 8 Chen Y, Spiering AJ. H, Karthikeyan S, Peters GW. M, Meijer EW, Sijbesma RP. Nat. Chem. 2012; 4: 559
  • 9 Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C. Science 2014; 344: 186
  • 10 Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, Otsuka H. Angew. Chem. Int. Ed. 2015; 54: 6168
  • 11 Kosuge T, Zhu X, Lau VM, Aoki D, Martinez TJ, Moore JS, Otsuka H. J. Am. Chem. Soc. 2019; 141: 1898
  • 12 Kato S, Furukawa S, Aoki D, Goseki R, Oikawa K, Tsuchiya K, Shimada N, Maruyama A, Numata K, Otsuka H. Nat. Commun. 2021; 12: 126
  • 13 Löwe C, Weder C. Adv. Mater. 2002; 14: 1625
  • 14 Traeger H, Sagara Y, Kiebala DJ, Schrettl S, Weder C. Angew. Chem. Int. Ed. 2021; 60: 16191
  • 15 Sagara Y, Traeger H, Li J, Okado Y, Schrettl S, Tamaoki N, Weder C. J. Am. Chem. Soc. 2021; 143: 5519
  • 16 Konda SS. M, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE. J. Am. Chem. Soc. 2013; 135: 12722
  • 17 Li J, Shiraki T, Hu B, Wright RA. E, Zhao B, Moore JS. J. Am. Chem. Soc. 2014; 136: 15925
  • 18 Noh J, Peterson GI, Choi T.-L. Angew. Chem. Int. Ed. 2021; 60: 18651
  • 19 Göstl R, Sijbesma RP. Chem. Sci. 2016; 7: 370
  • 20 Yildiz D, Baumann C, Mikosch A, Kuehne AJ. C, Herrmann A, Göstl R. Angew. Chem. Int. Ed. 2019; 58: 12919
  • 21 Baumann C, Stratigaki M, Centeno SP, Göstl R. Angew. Chem. Int. Ed. 2021; 60: 13287
  • 22 Izak-Nau E, Demco DE, Braun S, Baumann C, Pich A, Göstl R. ACS Appl. Polym. Mater. 2020; 2: 1682
  • 23 Willis-Fox N, Rognin E, Baumann C, Aljohani TA, Göstl R, Daly R. Adv. Funct. Mater. 2020; 30: 2002372
  • 24 Stratigaki M, Baumann C, van Breemen LC. A, Heuts JP. A, Sijbesma RP, Göstl R. Polym. Chem. 2020; 11: 358
  • 25 Slootman J, Waltz V, Yeh CJ, Baumann C, Göstl R, Comtet J, Creton C. Phys. Rev. X 2020; 10: 041045
  • 26 Morelle XP, Sanoja GE, Castagnet S, Creton C. Soft Matter 2021; 17: 4266
  • 27 Dubach FF. C, Ellenbroek WG, Storm C. J. Polym. Sci. 2021; 59: 1188
  • 28 Daniele MA, Bandera YP, Foulger SH. Photochem. Photobiol. 2012; 88: 129
  • 29 Synthesis of OFP diol 2 Mechanophore precursor 1 (549 mg, 1.6 mmol, 1.00 equiv) and 3-azido-1-propanol (155 μL, 1.68 mmol, 1.05 equiv) were dissolved in a mixture of THF (20 mL) and water (6 mL). Sodium l-ascorbate (317 mg, 1.6 mmol, 1.00 equiv) was added, followed by CuIISO4·5H2O (40 mg, 0.16 mmol, 0.100 equiv). The heterogeneous mixture was stirred vigorously at rt overnight and was afterwards diluted with water (50 mL). THF was removed in vacuo, and the white precipitate was cooled in an ice bath before collection by filtration. After washing the precipitate with cold water (2 ( 25 mL), it was dried in vacuo to yield the triazole mechanophore diol 2 (70% yield) as white solid. 1H NMR (400 MHz, DMSO-d 6): δ = 8.54 (s, 1 H), 7.52 (dd, J = 7.4, 1.2 Hz, 1 H), 7.41 (dd, J = 6.8, 1.9 Hz, 1 H), 7.30 (dd, J = 6.5, 2.0 Hz, 1 H), 7.18 (qt, J = 5.6, 2.6 Hz, 3 H), 7.04 (td, J = 7.6, 1.3 Hz, 1 H), 6.26 (d, J = 7.6 Hz, 1 H), 4.85 (d, J = 3.1 Hz, 1 H), 4.75 (t, J = 5.1 Hz, 1 H), 4.63 (t, J = 7.0 Hz, 2 H), 4.59 (t, J = 5.9 Hz, 1 H), 3.90 (d, J = 8.3 Hz, 1 H), 3.53 (dt, J = 7.6, 6.0 Hz, 2 H), 3.38 (dd, J = 8.3, 3.1 Hz, 1 H), 2.95 (ddt, J = 13.0, 9.2, 4.7 Hz, 2 H), 2.64–2.41 (m, 2 H), 2.12 (p, J = 6.7 Hz, 2 H); see Figure S1. 13C NMR (101 MHz, DMSO-d 6): δ = 175.94, 174.94, 144.29, 143.10, 141.00, 139.27, 138.42, 126.58, 126.56, 126.17, 126.15, 125.93, 124.82, 124.30, 123.80, 123.67, 57.49, 56.34, 49.23, 48.09, 47.50, 46.76, 44.89, 33.10; see Figure S2. ESI+ HRMS: m/z [MH+] calcd: 445.1870; found: 445.1942; see Figure S3.
  • 30 Cravotto G, Gaudino EC, Cintas P. Chem. Soc. Rev. 2013; 42: 7521
  • 31 Dawson WR, Windsor MW. J. Phys. Chem. 1968; 72: 3251
  • 32 Ast S, Fischer T, Müller H, Mickler W, Schwichtenberg M, Rurack K, Holdt H.-J. Chem. Eur. J. 2013; 19: 2990
  • 33 Stevenson R, De Bo G. J. Am. Chem. Soc. 2017; 139: 16768
  • 34 Sato T, Nalepa DE. J. Appl. Polym. Sci. 1978; 22: 865
  • 35 Kryger MJ, Munaretto AM, Moore JS. J. Am. Chem. Soc. 2011; 133: 18992
  • 36 Stauch T, Dreuw A. Chem. Sci. 2017; 8: 5567
  • 37 Jacobs MJ, Schneider G, Blank KG. Angew. Chem. Int. Ed. 2016; 55: 2899