Synlett 2021; 32(19): 1943-1947
DOI: 10.1055/s-0040-1720885
letter

Multiple Activation Catalyst for Asymmetric [4+2] Cycloaddition of Aldehydes with Dienes

Rei Tomifuji
,
Shunpei Murano
,
Satoru Teranishi
,
Daiki Kuroda
,
,
This work was supported by Grant-in-Aid for Scientific Research (Grant No. 20H02737, 18H04253 and 17KT0006) from the Ministry of Education, Culture, Sports, Science and Technology (Japan).


Abstract

The enantioselective oxa-Diels–Alder reaction of nonactivated substrates by utilizing FeCl3 and a 1,1′-bi-2-naphthol (BINOL) derived chiral phosphoric acid as a multiple activation catalyst is reported. Various oxygen-containing six-membered heterocycles were obtained in high yields and in an enantioselective manner. Density functional theory (DFT) calculations elucidate that both Lewis acidic and Brønsted acidic moieties in the catalyst system synergistically activate two lone pairs of an aldehyde to facilitate enantioselective addition reaction of dienes.

Supporting Information



Publication History

Received: 15 July 2021

Accepted after revision: 25 August 2021

Article published online:
09 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Boger DL, Weinreb SM. Hetero-Diels–Alder Methodology in Organic Synthesis . Academic Press; San Diego: 1987
    • 1b Jørgensen KA. Angew. Chem. Int. Ed. 2000; 39: 3558
    • 1c Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668

      For the enantioselective oxa-Diels–Alder reaction of nonactivated substrates, see:
    • 2a Liu L, Kim H, Xie Y, Farès C, Kaib PS. J, Goddard R, List B. J. Am. Chem. Soc. 2017; 139: 13656

    • For seminal examples of the enantioselective Diels–Alder reaction of nonactivated substrates, see:
    • 2b Shaykhutdinova P, Oestreich M. Org. Lett. 2018; 20: 7029
    • 2c Gatzenmeier T, Turberg M, Yepes D, Xie Y, Neese F, Bistoni G, List B. J. Am. Chem. Soc. 2018; 140: 12671

      For the racemic oxa-Diels–Alder reaction of nonactivated substrates, see:
    • 3a Griengl H, Geppert KP. Monatsh. Chem. 1976; 107: 675
    • 3b Oi S, Kashiwagi K, Terada E, Ohuchi K, Inoue Y. Tetrahedron Lett. 1996; 37: 6351
    • 3c Aggarwal V, Vennall GP, Davey PN, Newman C. Tetrahedron Lett. 1997; 38: 2569
    • 3d Hanamoto T, Sugimoto Y, Jin ZY, Inanaga J. Bull. Chem. Soc. Jpn. 1997; 70: 1421
    • 3e Fujiwara K, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2012; 134: 5512
    • 3f Kuwano T, Kurahashi T, Matsubara S. Chem. Lett. 2013; 42: 1241

    • For the pioneering theoretical study on the iron porphyrin catalyzed oxa-Diels–Alder reaction, see:
    • 3g Yang Y, Zhang X, Zhong L.-P, Lan J, Li X, Li C.-C, Chung LW. Nat. Commun. 2020; 11: 1850
  • 4 Tomifuji R, Kurahashi T, Matsubara S. Chem. Eur. J. 2019; 25: 8987
    • 5a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 5b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356

      For seminal works of spectroscopic study regarding the disproportionation of FeCl3, see:
    • 6a Swanson TB, Laurie VW. J. Phys. Chem. 1965; 69: 244
    • 6b Gamlen GA, Jordan DO. J. Chem. Soc. 1953; 1435
    • 6c Metzler DE, Myers RJ. J. Am. Chem. Soc. 1950; 72: 3772

      For stoichiometric and catalytic use of disproportionation of FeCl3 for the chemical reaction, see:
    • 7a Tobinaga S, Kotani E. J. Am. Chem. Soc. 1972; 94: 309
    • 7b Martin CL, Overman LE, Rohde JM. J. Am. Chem. Soc. 2008; 130: 7568
    • 7c Van Humbeck JF, Simonovich SP, Knowles RR, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 10012
    • 7d Tanaka T, Hashiguchi K, Tanaka T, Yazaki R, Ohshima T. ACS Catal. 2018; 8: 8430
    • 7e Tomifuji R, Maeda K, Takahashi T, Kurahashi T, Matsubara S. Org. Lett. 2018; 20: 7474
    • 7f Horibe T, Ohmura S, Ishihara K. J. Am. Chem. Soc. 2019; 141: 1877
    • 7g Horibe T, Ishihara K. Chem. Lett. 2020; 49: 107

      Other exceptional concepts of the combination of chiral phosphoric acid and additional acid catalyst were also reported, see:
    • 8a Hatano M, Goto Y, Izumiseki A, Akakura M, Ishihara K. J. Am. Chem. Soc. 2015; 137: 13472
    • 8b Lv J, Luo S. Chem. Commun. 2013; 49: 847
    • 8c Maskeri MA, O’Connor MJ, Jaworski AA, Davies AV, Scheidt KA. Angew. Chem. Int. Ed. 2018; 57: 17225

      Lewis acid–base bimetallic catalyst system have been also developed, see:
    • 10a Shibasaki M, Kanai M, Matsunaga S, Kumagai N. Acc. Chem. Res. 2009; 42: 1117
    • 10b Matsunaga S, Shibasaki M. Chem. Commun. 2014; 50: 1044
    • 11a Hanawa H, Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2003; 125: 1708
    • 11b Konishi S, Hanawa H, Maruoka K. Tetrahedron: Asymmetry 2003; 14: 1603

    • For examples of other metal bidentate activation, see:
    • 11c Ooi T, Takahashi M, Maruoka K. J. Am. Chem. Soc. 1996; 118: 11307
    • 11d Hanawa H, Abe N, Maruoka K. Tetrahedron Lett. 1999; 40: 5365
    • 11e Abe N, Hanawa H, Maruoka K, Sasaki M, Miyashita M. Tetrahedron Lett. 1999; 40: 5369
  • 12 Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. J. Am. Chem. Soc. 2010; 132: 6498
  • 13 General Procedure for the Synthesis of 4aa The reaction was performed in a 15 mL sealed tube equipped with a Teflon-coated magnetic stirrer bar. In a glove box, FeCl3 (0.0075 mmol, 5 mol%) and chiral phosphoric acid (0.00375 mmol, 2.5 mol%) were stirred in toluene (1 mL) at –50 °C. After FeCl3 was dissolved completely, aldehydes (0.15 mmol) were added and stirred for a while, then dienes (0.3 mmol) were added to a solution. After the reaction mixture was stirred at –50 °C for the indicated time, the solution was passed through a short silica gel pad, washed with ethyl acetate, and concentrated in vacuo. The crude product was purified by silica gel column chromatography with hexanes–EtOAc as eluent to afford the desired products 4aa. Compound 4aa: yield 53%, 66% ee, white solid; [α]D 23 +25.8 (c 0.83, CH2Cl2); mp 83–84 °C (hexane). TLC: Rf = 0.25 (hexane/ethyl acetate = 30:1). 1H NMR (500 MHz CDCl3): δ = 7.84–7.92 (m, 4 H), 7.57 (dd, J = 8.4, 1.5 Hz, 1 H), 7.47–7.50 (m, 2 H), 7.42–7.55 (m, 2 H), 7.33–7.39 (m, 2 H), 7.28 (dt, J = 7.0, 1.5 Hz, 1 H), 6.24–6.28 (m, 1 H), 4.85 (dd, J = 9.5, 4.5 Hz, 1 H), 4.55–4.67 (m, 2 H), 2.73–2.85 (m, 2 H). 13C NMR (125.7 MHz CDCl3): δ = 140.0, 139.7, 134.4, 133.3, 132.9, 128.5, 128.2, 128.0, 127.7, 127.4, 126.1, 125.8, 124.8, 124.5, 124.1, 122.2, 76.0, 66.9, 35.9. IR (KBr): 2824, 1600, 1446, 1372, 1119, 826, 752, 693 cm–1. HRMS (ESI+): m/z calcd for [M + H]+: 285.1285; found: 285.1278. HPLC (Daicel Chiralpak IB, hexane/i-PrOH = 98.5:1.5, flow rate = 1.0 mL/min, λ = 254 nm, 40 °C): t R (minor) = 13.1 min, t R (major) = 16.0 min.