Subscribe to RSS
DOI: 10.1055/s-0040-1720115
Dual-Catalysis-Enabled Construction of Vicinal Stereogenic Centers through Diastereo- and Enantioselective Allylic Substitution
We thank the National Natural Science Foundation of China (22271161, 22188101), the Tianjin Science Fund for Distinguished Young Scholars (23JCJQJC00180), the Fundamental Research Funds for the Central Universities (63223065) and Nankai University for financial support.
Abstract
Vicinal stereogenic centers represent prevalent structural motifs in organic synthetic chemistry, and their construction poses a longstanding challenge. Transition-metal-catalyzed asymmetric allylic substitution has become a well-established enantioselective C–C bond-forming reaction. When these reactions involve a prochiral nucleophile and an allylic electrophile with a terminal substituent, the creation of vicinal stereogenic centers becomes feasible. However, despite remarkable achievements having been accomplished, realizing this transformation with precise control over both the enantio- and diastereoselectivity remains a significant challenge. To address the stereoselective challenges, the introduction of a second catalyst to the transition-metal-catalyzed asymmetric allylic alkylation to control the diastereoselectivity during C–C bond formation has proven particularly fruitful. In this short review, we aim to highlight recent advances in dual catalysis that enable diastereo- and enantioselective allylic substitutions.
1 Introduction
2 Construction of Vicinal Stereogenic Centers by Organo and Metal Dual Catalysis
2.1 Chiral Phase-Transfer Catalysis and Transition-Metal Dual Catalysis
2.2 Chiral Amine and Transition-Metal Dual Catalysis
2.3 NHC and Transition-Metal Dual Catalysis
2.4 Chiral Aldehyde and Transition-Metal Dual Catalysis
2.5 Chiral Lewis Base and Transition-Metal Dual Catalysis
3 Construction of Vicinal Stereogenic Centers by Metal and Metal Dual Catalysis
3.1 Lewis Acidic Metal and Iridium Dual Catalysis
3.2 Lewis Acidic Metal and Palladium Dual Catalysis
3.3 Palladium and Ruthenium Dual Catalysis
3.4 Other Advancements in the Construction of Vicinal Stereogenic Centers through Synergistic Bimetallic Catalysis Enabling Asymmetric Allylic Alkylation
4 Conclusions and Future Outlook
Key words
transition-metal-catalyzed allylic alkylation - asymmetric allylic substitution - vicinal stereogenic centers - dual catalysis - synergistic catalysisPublication History
Received: 05 March 2024
Accepted after revision: 02 April 2024
Article published online:
15 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Long R, Huang J, Gong J, Yang Z. Nat. Prod. Rep. 2015; 32: 1584
- 1b Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Angew. Chem. Int. Ed. 2016; 55: 4156
- 2 Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 6: 4387
- 3 Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
- 4a Süsse L, Stoltz BM. Chem. Rev. 2021; 121: 4084
- 4b Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
- 4c Kazmaier U. Org. Chem. Front. 2016; 3: 1541
- 4d Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
- 4e Oliver S, Evans PA. Synthesis 2013; 45: 3179
- 4f Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 5a Allen AE, Macmillan DW. Chem. Sci. 2012; 633
- 5b Fu J, Huo X, Li B, Zhang W. Org. Biomol. Chem. 2017; 15: 9747
- 5c Afewerki S, Cordova A. Top. Curr. Chem. 2019; 377: 38
- 5d Kim UB, Jung DJ, Jeon HJ, Rathwell K, Lee SG. Chem. Rev. 2020; 120: 13382
- 5e Knox GJ, Hutchings-Goetz LS, Pearson CM, Snaddon TN. Top. Curr. Chem. 2020; 378: 16
- 5f Chen DF, Gong LZ. J. Am. Chem. Soc. 2022; 144: 2415
- 5g Huo X, Li G, Wang X, Zhang W. Angew. Chem. Int. Ed. 2022; 61: e202210086
- 5h Nielsen CD, Linfoot JD, Williams AF, Spivey AC. Org. Biomol. Chem. 2022; 20: 2764
- 6a Zhang Q, Yu H, Shen L, Tang T, Dong D, Chai W, Zi W. J. Am. Chem. Soc. 2019; 141: 14554
- 6b Shao W, Besnard C, Guenee L, Mazet C. J. Am. Chem. Soc. 2020; 142: 16486
- 6c Zhang Z, Xiao F, Wu HM, Dong XQ, Wang CJ. Org. Lett. 2020; 22: 569
- 6d Wang H, Zhang R, Zhang Q, Zi W. J. Am. Chem. Soc. 2021; 143: 10948
- 6e Xia J, Hirai T, Katayama S, Nagae H, Zhang W, Mashima K. ACS Catal. 2021; 11: 6643
- 6f Zhu M, Zhang Q, Zi W. Angew. Chem. Int. Ed. 2021; 60: 6545
- 6g Chai W, Guo B, Zhang Q, Zi W. Chem Catal. 2022; 2: 1428
- 6h Zhu M, Wang P, Zhang Q, Tang W, Zi W. Angew. Chem. Int. Ed. 2022; 61: e202207621
- 6i Han J, Liu R, Lin Z, Zi W. Angew. Chem. Int. Ed. 2023; 62: e202215714
- 6j Liu J.-H, Zhou Q, Lin Y, Wu Z.-L, Cai T, Wen W, Huang Y.-M, Guo Q.-X. ACS Catal. 2023; 13: 6013
- 6k Wang H, Xu Y, Zhang F, Liu Y, Feng X. Angew. Chem. Int. Ed. 2022; 61: e202115715
- 6l Chen M, Yang L, Li Y, Qu Y, Pan G, Feng X, Liu X. Sci. China Chem. 2024; 67: 542
- 7 García Mancheño O, Waser M. Chem. Soc. Rev. 2023; 26: e202200950
- 8a Ghosh A, Biju AT. Angew. Chem. Int. Ed. 2021; 60: 13712
- 8b Liu Y, Wang Y, Wu X, Chi YR. Chem. Rec. 2023; 23: e202200219
- 8c Tanaka F. Chem. Rec. 2023; 23: e202200207
- 8d Vellalath S, Romo D. Angew. Chem. Int. Ed. 2016; 55: 13934
- 8e Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
- 8f Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
- 8g Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
- 8h Wang Q, Gu Q, You S. Angew. Chem. Int. Ed. 2019; 58: 6818
- 8i Brazier JB, Tomkinson NC. O. Secondary and Primary Amine Catalysts for Iminium Catalysis . In Asymmetric Organocatalysis . List B. Springer Berlin Heidelberg; Berlin/Heidelberg: 2009: 281-347
- 8j Kampen D, Reisinger CM, List B. Chiral Brønsted Acids for Asymmetric Organocatalysis . In Asymmetric Organocatalysis . List B. Springer Berlin Heidelberg; Berlin/Heidelberg: 2009: 1-37
- 8k Ting A, Goss JM, McDougal NT, Schaus SE. Brønsted Base Catalysts . In Asymmetric Organocatalysis . List B. Springer; Berlin/Heidelberg: 2009: 201-232
- 8l Lee H.-J, Maruoka K. Chem. Rec. 2023; 23: e202200286
- 8m Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 8n Alemán J, Cabrera S. Chem. Soc. Rev. 2013; 42: 774
- 8o Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
- 8p Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
- 8q Kumar I, Ramaraju P, Mir NA. Org. Biomol. Chem. 2013; 11: 709
- 8r Wang N, Xu J, Lee JK. Org. Biomol. Chem. 2018; 16: 8230
- 9 Nakoji M, Kanayama T, Okino T, Takemoto Y. Org. Lett. 2001; 3: 3329
- 10 Kanayama T, Yoshida K, Miyabe H, Takemoto Y. Angew. Chem. Int. Ed. 2003; 42: 2054
- 11 Su YL, Li YH, Chen YG, Han ZY. Chem. Commun. 2017; 53: 1985
- 12 Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952
- 13a Liu D, Xie F, Zhang W. Tetrahedron Lett. 2007; 48: 7591
- 13b Zhao X, Liu D, Xie F, Liu Y, Zhang W. Org. Biomol. Chem. 2011; 9: 1871
- 14a Bihelovic F, Matovic R, Vulovic B, Saicic RN. Org. Lett. 2007; 9: 5063
- 14b Vulovic B, Bihelovic F, Matovic R, Saicic RN. Tetrahedron 2009; 65: 10485
- 15 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science 2013; 340: 1065
- 16 Sandmeier T, Krautwald S, Zipfel HF, Carreira EM. Angew. Chem. Int. Ed. 2015; 54: 14363
- 17 Schafroth MA, Zuccarello G, Krautwald S, Sarlah D, Carreira EM. Angew. Chem. Int. Ed. 2014; 53: 13898
- 18 Zhang MM, Wang YN, Wang BC, Chen XW, Lu LQ, Xiao WJ. Nat Commun. 2019; 10: 2716
- 19a Afewerki S, Ma G, Ibrahem I, Liu L, Sun J, Córdova A. ACS Catal. 2015; 5: 1266
- 19b Leth LA, Glaus F, Meazza M, Fu L, Thogersen MK, Bitsch EA, Jorgensen KA. Angew. Chem. Int. Ed. 2016; 55: 15272
- 19c Meazza M, Rios R. Chem. Eur. J. 2016; 22: 9923
- 19d Meazza M, Kamlar M, Jasikova L, Formanek B, Mazzanti A, Roithova J, Vesely J, Rios R. Chem. Sci. 2018; 9: 6368
- 20 Naesborg L, Halskov KS, Tur F, Monsted SM, Jorgensen KA. Angew. Chem. Int. Ed. 2015; 54: 10193
- 21 Su Y.-L, Han Z.-Y, Li Y.-H, Gong L.-Z. ACS Catal. 2017; 7: 7917
- 22 Burstein C, Glorius F. Angew. Chem. Int. Ed. 2004; 43: 6205
- 23 Liu K, Hovey MT, Scheidt KA. Chem. Sci. 2014; 5: 4026
- 24a Guo C, Fleige M, Janssen-Muller D, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2016; 138: 7840
- 24b Singha S, Serrano E, Mondal S, Daniliuc CG, Glorius F. Nat. Catal. 2020; 3: 48
- 25 Bhaskararao B, Rotella ME, Kim DY, Kee J.-M, Kim KS, Kozlowski MC. J. Am. Chem. Soc. 2022; 144: 16171
- 26 Chen L, Luo M.-J, Zhu F, Wen W, Guo Q.-X. J. Am. Chem. Soc. 2019; 141: 5159
- 27 Zhou Q, Yin ZW, Wu ZL, Cai T, Wen W, Huang YM, Guo QX. Org. Lett. 2023; 25: 5790
- 28a Morrill LC, Smith AD. Chem. Soc. Rev. 2014; 43: 6214
- 28b Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
- 28c Gaunt MJ, Johansson CC. C. Chem. Rev. 2007; 107: 5596
- 29 Schwarz KJ, Amos JL, Klein JC, Do DT, Snaddon TN. J. Am. Chem. Soc. 2016; 138: 5214
- 30 Jiang X, Beiger JJ, Hartwig JF. J. Am. Chem. Soc. 2017; 139: 87
- 31 Pearson CM, Fyfe JW. B, Snaddon TN. Angew. Chem. Int. Ed. 2019; 58: 10521
- 32 Chen ZC, Chen Z, Yang ZH, Guo L, Du W, Chen YC. Angew. Chem. Int. Ed. 2019; 58: 15021
- 33 Bitai J, Nimmo AJ, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2022; 61: e202202621
- 34 Wang Q, Fan T, Song J. Org. Lett. 2023; 25: 1246
- 35 Huo X, He R, Zhang X, Zhang W. J. Am. Chem. Soc. 2016; 138: 11093
- 36 He R, Liu P, Huo X, Zhang W. Org. Lett. 2017; 19: 5513
- 37 Jiang X, Boehm P, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 1239
- 38 He ZT, Jiang X, Hartwig JF. J. Am. Chem. Soc. 2019; 141: 13066
- 39 Huo X, Zhang J, Fu J, He R, Zhang W. J. Am. Chem. Soc. 2018; 140: 2080
- 40 Wei L, Zhu Q, Xu SM, Chang X, Wang CJ. J. Am. Chem. Soc. 2018; 140: 1508
- 41 Wu HM, Zhang Z, Xiao F, Wei L, Dong XQ, Wang CJ. Org. Lett. 2020; 22: 4852
- 42 Zhao L, Li G, He R, Liu P, Wang F, Huo X, Zhao M, Zhang W. Org. Biomol. Chem. 2021; 19: 1955
- 43a Sun XS, Ou-Yang Q, Xu SM, Wang XH, Tao HY, Chung LW, Wang CJ. Chem. Commun. 2020; 56: 3333
- 43b Peng Y, Huo X, Luo Y, Wu L, Zhang W. Angew. Chem. Int. Ed. 2021; 60: 24941
- 43c Xiao L, Wei L, Wang CJ. Angew. Chem. Int. Ed. 2021; 60: 24930
- 43d Fu C, Xiong Q, Xiao L, He L, Bai T, Zhang Z, Dong XQ, Wang CJ. Chin. J. Chem. 2022; 40: 1059
- 43e Zhu BK, Xu H, Xiao L, Chang X, Wei L, Teng H, Dang Y, Dong XQ, Wang CJ. Chem. Sci. 2023; 14: 4134
- 44 Lu R, Zhang Q, Guo C. Nat Commun. 2023; 14: 8118
- 45 Wang W, Zhang F, Liu Y, Feng X. Angew. Chem. Int. Ed. 2022; 61: e202208837
- 46 Xu Y, Wang H, Yang Z, Zhou Y, Liu Y, Feng X. Chem 2022; 8: 2011
- 47a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 47b Braun M, Meier T. Angew. Chem. Int. Ed. 2006; 45: 6952
- 48 Saito A, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2017; 56: 5551
- 49 Li G, Zhao L, Luo Y, Peng Y, Xu K, Huo X, Zhang W. Chem. Eur. J. 2022; 28: e202200273
- 50 Le TP, Tanaka S, Yoshimura M, Sato K, Kitamura M. Nat. Commun. 2022; 13: 5876
- 51 Qi J, Wei F, Tung CH, Xu Z. Angew. Chem. Int. Ed. 2021; 60: 13814
- 52 Qiqige Q, Lundgren RJ, Kong D. Chem. Eur. J. 2023; 29: e202300727
- 53 Xie JH, Hou YM, Feng Z, You SL. Angew. Chem. Int. Ed. 2023; 62: e202216396