CC BY 4.0 · SynOpen 2023; 07(02): 277-289
DOI: 10.1055/s-0040-1720072
review
Virtual Collection Click Chemistry and Drug Discovery

Click-Chemistry-Assisted Alteration of Glycosaminoglycans for Biological Applications

Smritilekha Bera
,
Dhananjoy Mondal


Abstract

This short review describes the assistance of click chemistry in the chemical modification of glycosaminoglycans. Through an alkyne-azide 1,3-dipolar cycloaddition reaction, the chemically and physiologically stable triazole unit connects glycosaminoglycans with other labelled or attached functionalities. The synthesized glycosaminoglycan (GAG) conjugates act as drug carriers, forming hydrogels or nanohydrogels for localized drug delivery or injectable GAGs and so on. These are used in research on antithrombotic agents, protein binding, and hepatocyte growth factors, as well as in mechanistic studies of glycosaminoglycans biosynthesis and wound healing.

1 Introduction

2 Synthetic Modification of GAGS

3 Click Chemistry

4 Modification of GAGS Applying Click Chemistry

5 Conclusions

6 Abbreviations



Publication History

Received: 03 March 2023

Accepted after revision: 08 May 2023

Article published online:
19 June 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Antonio JD. S, Iozzo RV. Glycosaminoglycans: Structure and Biological Functions. In Encyclopedia of Life Sciences. John Wiley & Sons; Weinheim: 2001
    • 1b Gandhi NS, Mancera RL. Chem. Biol. Drug Des. 2008; 72: 455
  • 2 Esko JD, Kimata K, Lindahl U. Proteoglycans and Sulfated Glycosaminoglycans . In Essentials of Glycobiology, 2nd ed. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Cold Spring Harbour Laboratory Press; New York: 2009
  • 3 DeAngelis PL. Anat. Rec. 2002; 268: 317
  • 4 Taylor KR, Gallo RL. FASEB J. 2006; 20: 9
  • 5 Gandhi NS, Mancera RL. Chem. Biol. Drug Des. 2008; 72: 455
  • 6 Raman R, Sasisekharan V, Sasisekharan R. Chem. Biol. 2005; 12: 267
  • 7 Schnabelrauch M, Scharnweber D, Schiller J. Curr. Med. Chem. 2013; 20: 2501
  • 8 Salanga CL, Handel TM. Exp. Cell Res. 2011; 317: 590
  • 9 Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, Lam C, Auer M, Hub E, Rot A. Cell 1997; 91: 385
  • 10 Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA. Blood 2002; 100: 3853
  • 11 Wang LC, Fuster M, Sriramarao P, Esko JD. Nat. Immunol. 2005; 6: 902
  • 12 Bishop JR, Schuksz M, Esko JD. Nature 2007; 446: 1030
  • 13 Luster AD, Greenberg SM, Leder P. J. Exp. Med. 1995; 182: 219
  • 14 Webb LM. C, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 7158
  • 15 Bourin MC, Lindahl U. Biochem. J. 1993; 289: 313
  • 16 Ariga T, Miyatake T, Yu RK. J. Neurosci. Res. 2010; 88: 2303
  • 17 Kano K, Miyano T, Kato S. Biol. Reprod. 1998; 58: 1226
    • 18a Sasisekharan R, Raman R, Prabhakar V. Annu. Rev. Biomed. Eng. 2006; 8: 181
    • 18b Sasisekharan R, Venkataraman G. Curr. Opin. Chem. Biol. 2000; 4: 626
  • 20 Toida T, Yoshida H, Toyoda H, Koshiishi I, Imanari T, Hileman RE, Fromm JR, Linhardt RJ. Biochem. J. 1997; 322: 499
  • 21 Lindahl U, Kusche-Gullberg M, Kjellén L. J. Biol. Chem. 1998; 273: 24979
    • 22a Silbert JE, Sugumaran G. IUBMB Life 2002; 54: 177
    • 22b Prabhakar V, Raman R, Capila I, Bosques CJ, Pojasek K, Sasisekharan R. Biochem. J. 2005; 390: 395
    • 23a Funderburgh JL. IUBMB Life 2002; 54: 187
    • 23b Barry FP, Neame PJ, Sasse J, Pearson D. Matrix Biol. 1994; 14: 323
    • 23c Christner JE, Distler JJ, Jourdian GW. Arch. Biochem. Biophys. 1979; 192: 548
    • 24a Papakonstantinou E, Roth M, Karakiulakis G. Derm.-Endocrinol. 2012; 4: 253
    • 24b Gupta RC, Lall R, Srivastava A, Sinha A. Front. Vet. Sci. 2019; 6: 192
    • 24c Dovedytis M, Liu ZJ, Bartlett S. Engineered Regeneration 2020; 1: 102
    • 25a Nilasaroya A, Poole-Warren LA, Whitelock JM, Martens PJ. Biomaterials 2008; 29: 4658
    • 25b Ornell KJ, Lozada D, Phan NV, Coburn JM. J. Mater. Chem. B 2019; 7: 2151
    • 26a Vassie JA, Whitelock JM, Lord MS. Glycosaminoglycan Functionalized Nanoparticles Exploit Glycosaminoglycan Functions, in: Glycosaminoglycans. Methods in Molecular Biology, Vol. 1229. Balagurunathan K, Nakato H, Desai U. Humana Press; New York: 2015
    • 26b Niu J, Yuan M, Liu Y, Wang L, Tang Z, Wang Y, Qi Y, Zhang Y, Ya H, Fan Y. Front. Chem. 2022; 10: 1028372
    • 26c Liu Y, Han Y, Zhu T, Wu X, Yu W, Zhu J, Shang Y, Lin X, Zhao T. Drug Delivery 2021; 28: 2100
    • 27a Carvalho AM, Teixeira R, Novoa-Carballal R, Pires RA, Reis RL, Pashkuleva I. Biomacromolecules 2018; 19: 2991
    • 27b Cabral H, Miyata K, Osada K, Kataoka K. Chem. Rev. 2018; 118: 6844
    • 28a Schnabelrauch M, Schiller J, Möller S, Scharnweber D, Hintze V. Biol. Chem. 2021; 402: 1385
    • 28b Scharnweber D, Hübner L, Rother S, Hempel U, Anderegg U, Samsonov SA, Pisabarro MT, Hofbauer L, Schnabelrauch M, Franz S, Simon J, Hintze V. J. Mater. Sci.: Mater. Med. 2015; 26: 232
    • 28c Schnabelrauch M, Scharnweber D, Schiller J. Curr. Med. Chem. 2013; 20: 2501
    • 29a Hachim D, Whittaker TE, Kim H, Stevens MM. J. Controlled Release 2019; 313: 131
    • 29b Neves MI, Araújo M, Moroni L, da Silva RM. P, Barrias CC. Molecules 2020; 25: 978
    • 29c Miura Y, Fukuda T, Seto H, Hoshino Y. Polym. J. 2016; 48: 229
    • 30a Palhares LC. G. F, London JA, Kozlowski AM, Esposito E, Chavante SF, Ni M, Yates EA. Molecules 2021; 26: 5211
    • 30b Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chem. Rev. 2016; 116: 8193
  • 31 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 32a Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
    • 32b Tornoe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 32c Rodionov VO, Fokin VV, Finn MG. Angew. Chem. Int. Ed. 2005; 44: 2210
    • 32d Rodionov VO, Presolski SI, Diaz DD, Fokin VV, Finn MG. J. Am. Chem. Soc. 2007; 129: 12705
    • 32e Meldal M, Tornoe CW. Chem. Rev. 2008; 108: 2952
    • 32f Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
    • 33a Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR. ACS Chem. Biol. 2006; 1: 644
    • 33b Lutz J.-F, Zarafshani Z. Adv. Drug Delivery Rev. 2008; 60: 958
    • 33c Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
    • 34a Kuang L, Damayanti NP, Jiang C, Fei X, Liu W, Narayanan N, Irudayaraj J, Campanella O, Deng M. J. Appl. Polym. Sci. 2019; 136: 47212
    • 34b Fan F, Zhang P, Wang L, Sun T, Cai C, Yu G. Biomacromolecules 2019; 20: 3798
    • 35a Karst NA, Linhardt RJ. Curr. Med. Chem. 2003; 10: 1993
    • 35b Zhang X, Green DE, Schultz VL, Lin L, Han X, Wang R, Yaksic A, Kim SY, DeAngelis PL, Linhardt RJ. J. Org. Chem. 2017; 82: 9910
  • 36 Bera S, Linhardt RJ. J. Org. Chem. 2011; 76: 3181
  • 37 Dimitrievska S, Cai C, Weyers A, Balestrini JL, Lin T, Sundaram S, Hatachi G, Spiegel DA, Kyriakides TR, Miao J, Li G, Niklason LE, Linhardt RJ. Acta Biomaterialia 2015; 13: 177
  • 38 Wu ZL, Huang X, Ethen CM, Tatge T, Pasek M, Zaia J. Glycobiology 2017; 27: 518
  • 39 Willén D, Mastio R, Söderlund Z, Manner S, Westergren-Thorsson G, Tykesson E, Ellervik U. Bioconjugate Chem. 2021; 32: 2507
  • 40 Schiller J, Lemmnitzer K, Dürig J.-N, Rademann J. Biol. Chem. 2021; 402: 1375
    • 41a Tran VM, Nguyen TK, Sorna V, Loganathan D, Kuberan B. ACS Chem. Biol. 2013; 8: 949
    • 41b Mausam K, Quintero MV, Raman K, Tran VM, Kuberan B. Methods Mol. Biol. 2015; 1229: 517
    • 41c Tran VM, Victor XV, Yockman JW, Kuberan B. Glycoconjugate J. 2010; 27: 625
  • 42 Victor XV, Nguyen TK. N, Ethirajan M, Tran VM, Nguyen KV, Kuberan B. J. Biol. Chem. 2009; 284: 25842
  • 43 Piperno A, Zagami R, Cordaro A, Pennisi R, Musarra-Pizzo M, Scala A, Sciortino MT, Mazzaglia A. J. Inclusion Phenom. Macrocyclic Chem. 2019; 93: 33
  • 44 Manzi G, Zoratto N, Matano S, Sabia R, Villani C, Coviello T, Matricardi P, Di Meo C. Carbohydr. Polym. 2017; 174: 706
  • 45 Galderma SA, Boiteau J.-G. European Patent WO2015044455, 2017
    • 46a Saletti M, Paolino M, Ballerini L, Giuliani G, Leone G, Lamponi S, Andreassi M, Bonechi C, Donati A, Piovani D, Schieroni AG, Magnani A, Cappelli A. Pharmaceutics 2022; 14: 1041
    • 46b Paolino M, Varvarà P, Saletti M, Reale A, Gentile M, Paccagnini E, Giuliani G, Komber H, Licciardi M, Cappelli A. J. Appl. Polym. Sci. 2023; 40: e53300
  • 47 Crescenzi V, Cornelio L, Di Meo C, Nardecchia S. Biomacromolecules 2007; 8: 1844
  • 48 Martini M, Hegger PS, Schädel N, Minsky BB, Kirchhof M, Scholl S, Southan A, Tovar GE. M, Boehm H, Laschat S. Materials 2016; 9: 810
  • 49 Hu X, Li D, Zhou F, Gao C. Acta Biomaterialia 2011; 7: 1618
  • 50 Pasale SK, Cerroni B, Ghugare SV, Paradossi G. Macromol. Biosci. 2014; 14: 1025
  • 51 Takahashi A, Suzuki Y, Suhara T, Omichi K, Shimizu A, Hasegawa K, Kokudo N, Ohta S, Ito T. Biomacromolecules 2013; 14: 3581