Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(11): 2604-2615
DOI: 10.1055/s-0040-1719878
DOI: 10.1055/s-0040-1719878
psp
A General Approach to Spirocyclic Piperidines via Castagnoli–Cushman Chemistry
This research was supported by the Russian Science Foundation (grant no. 19-75-30008).
Abstract
Unsaturated spirocyclic lactams stemming from a variant of the three-component Castagnoli–Cushman reaction successfully underwent hydrogenation to enable access to fully saturated spirocyclic lactams. The subsequent lactam reduction gave rise to 2-spiro piperidine building blocks. The latter can be further elaborated in compound libraries and, on their own, show propensity to activate trace amine-associated receptor 1 (TAAR1), an important target for CNS disease.
Keywords
Castagnoli–Cushman - spirocyclic motifs - compound libraries - trace amine-associated receptor 1 agonistsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719878. Included are the copies of NMR spectra of all prepared compounds, the single-crystal XRD analysis data of 6c and 7b as well as the results of in vitro biological studies of compounds 6b, 6c, 6g and 6j.
- Supporting Information
Publication History
Received: 08 October 2021
Accepted after revision: 13 December 2021
Article published online:
08 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
-
1a
Lovering F,
Bikker J,
Humblet C.
J. Med. Chem. 2009; 52: 6752
- 1b Lovering F. MedChemComm 2013; 4: 515
- 1c Carreira EM, Fessard TC. Chem. Rev. 2014; 114: 8257
- 2 Hanby AR, Troelsen NS, Osberger TJ, Kidd SL, Mortensen KT, Spring DR. Chem. Commun. 2020; 56: 2280
- 3 Moss GP. Pure Appl. Chem. 1999; 71: 531
- 4 Chupakhin E, Babich O, Prosekov A, Asyakina L, Krasavin M. Molecules 2019; 24: 4165
- 5 Bathula C, Dangi P, Hati S, Agarwal R, Munshi P, Singh A, Singh S, Sen S. New J. Chem. 2015; 39: 9281
- 6 Hiesinger K, Dar’in D, Proschak E, Krasavin M. J. Med. Chem. 2021; 64: 150
- 7 Müller G, Berkenbosch T, Benningshof JC. J, Stumpfe D, Bajorath J. Chem. Eur. J. 2017; 23: 703
- 8 Griggs SD, Tape DT, Clarke PA. Org. Biomol. Chem. 2018; 16: 6620
- 9 Brasholz M, Macdonald JM, Saubern S, Ryan JH, Holmes AB. Chem. Eur. J. 2010; 16: 11471
- 10 Christie HS, Heathcock CH. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12079
- 11 Krasavin M, Dar’in D. Tetrahedron Lett. 2016; 57: 1635
- 12 Firsov A, Chupakhin E, Dar’in D, Bakulina O, Krasavin M. Org. Lett. 2019; 21: 1637
- 13 Firsov A, Bakulina O, Dar’in D, Guranova N, Krasavin M. J. Org. Chem. 2020; 85: 6822
- 14 Peshkov AA, Bakulina O, Dar’in D, Kantin G, Bannykh A, Peshkov VA, Krasavin M. Eur. J. Org. Chem. 2021; 1726
- 15 These transformations were conducted under the conditions adapted from our recent work on the synthesis of cis-configured 2,4-disubstituted 1-alkylpiperidines via Castagnoli–Cushman chemistry. For details, see: Levashova E, Firsov A, Bakulina O, Peshkov A, Kanov E, Gainetdinov RR, Krasavin M. Mendeleev Commun. 2021; 31: 488
- 16 See Supporting Information for details.
- 17 While 2-spiro piperidine 6n has been synthesized previously, our current methodology for its preparation appears to be more convergent and straightforward. For the previous synthesis, see: Allen CE, Chow CL, Caldwell JJ, Westwood IM, van Montfort RL. M, Collins I. Bioorg. Med. Chem. 2013; 21: 5707
- 18 Espinoza S, Masri B, Salahpour A, Gainetdinov RR. Dopamine . In Methods and Protocols, Methods in Molecular Biology, Vol. 964. Kabbani N. Humana Press; Totowa: 2013: 107-122