RSS-Feed abonnieren
DOI: 10.1055/s-0040-1719865
Mild, General, and Regioselective Synthesis of 2-Aminopyridines from Pyridine N-Oxides via N-(2-Pyridyl)pyridinium Salts
Abstract
A synthesis of 2-aminopyridines from pyridine N-oxides via their corresponding N-(2-pyridyl)pyridinium salts has been demonstrated and investigated. The reaction sequence features a highly regioselective conversion of the N-oxide into its pyridinium salt followed by hydrolytic decomposition of the pyridinium moiety to furnish the 2-aminopyridine product. The method is compatible with a wide range of functional groups, is scalable, and features inexpensive reagents. 15N-labeling results gave products consistent with a Zincke reaction mechanism.
Key words
aminopyridines - pyridine oxides - pyridylpyridinium compounds - isotopic labeling - Zincke reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719865.
- Supporting Information
Publikationsverlauf
Eingereicht: 07. Oktober 2021
Angenommen nach Revision: 13. Dezember 2021
Artikel online veröffentlicht:
11. Januar 2022
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Hagmann WK, Caldwell CG, Chen P, Durette PL, Esser CK, Lanza TJ, Kopka IE, Guthikonda R, Shah SK, MacCoss M, Chabin RM, Fletcher D, Grant SK, Green BG, Humes JL, Kelly TM, Luell S, Meurer R, Moore V, Pacholok SG, Pavia T, Williams HR, Wong KK. Bioorg. Med. Chem. Lett. 2000; 10: 1975
- 1b Connolly S, Aberg A, Arvai A, Beaton HG, Cheshire DR, Cook AR, Cooper S, Cox D, Hamley P, Mallinder P, Millichip I, Nicholls DJ, Rosenfeld RJ, St-Gallay SA, Tainer J, Tinker AC, Wallace AV. J. Med. Chem. 2004; 47: 3320
- 1c Hilton S, Naud S, Caldwell JJ, Boxall K, Burns S, Anderson VE, Antoni L, Allen CE, Pearl LH, Oliver AW, Aherne GW, Garrett MD, Collins I. Bioorg. Med. Chem. 2010; 18: 707
- 1d Malmas MS, Barnes K, Hui Y, Johnson M, Lovering F, Condon J, Fobare W, Solvibile W, Turner J, Hu Y, Manas ES, Fan K, Olland A, Chopra R, Bard J, Pangalos MN, Reinhart P, Robichaud AJ. Bioorg. Med. Chem. Lett. 2010; 20: 2068
- 1e Younis Y, Douelle F, Feng T.-S, Gonzáles Cabrera D, Le Manach C, Nchinda AT, Duffy S, White KL, Shackleford DM, Morizzi J, Manilla J, Katneni K, Bhamidipati R, Zabiulla KM, Joseph JT, Bashyam S, Waterson D, Witty MJ, Hardick D, Wittlin S, Avery V, Charman SA, Chibale K. J. Med. Chem. 2012; 55: 3479
- 1f Huang H, Guzman-Perez A, Acuqiviva L, Berry V, Bregman H, Dovey J, Gunaydin H, Huang X, Huang L, Saffran D, Serafino R, Schneider S, Wilson C, DiMauro EF. ACS Med. Chem. Lett. 2013; 4: 1218
- 1g Wang H.-Y, Qin Y, Li H, Roman LJ, Martásek P, Poulos TL, Silverman RB. J. Med. Chem. 2016; 59: 4913
- 1h Gerster JF, Lindstrom KJ, Miller RL, Tomai MA, Birmachu W, Bomersine SN, Gibson SJ, Imbertson LM, Jacobson JR, Knafla RT, Maye PV, Nikolaides N, Oneyemi FY, Parkhurst GJ, Pecore SE, Reiter MJ, Scribner LS, Testerman TL, Thompson NJ, Wagner TL, Weeks CE, Andre J.-D, Lagain D, Bastard Y, Lupu M. J. Med. Chem. 2005; 48: 3481
- 1i González Cabrera D, Douelle F, Younis Y, Feng T.-S, Le Manach C, Nchinda AT, Street LJ, Scheurer C, Kamber J, White KL, Montagnat OD, Ryan E, Katneni K, Zabiulla KM, Joseph JT, Bashyam S, Waterson D, Witty MJ, Charman SA, Wittlin S, Chibale K. J. Med. Chem. 2012; 55: 11022
- 2a Bagdi AK, Santra S, Monir K, Hajra A. Chem. Commun. 2015; 51: 1555 ; and references therein
- 2b Geng J.-B, Wu X.-F. J. Heterocycl. Chem. 2017; 54: 794
- 2c Venugopal S, Sundaram S. J. Heterocycl. Chem. 2016; 53: 882
- 2d Meng T, Zhang Z, Hu D, Lin L, Ding J, Wang X, Shen J. J. Comb. Chem. 2007; 9: 739
- 2e Yang K, Xiang J, Bao G, Dang Q, Bai X. ACS Comb. Sci. 2013; 15: 519
- 2f Rousseau AL, Matlaba P, Parkinson CJ. Tetrahedron Lett. 2007; 48: 4079
- 2g Adib M, Sayahi MH, Nosrati M, Zhu L.-G. Tetrahedron Lett. 2007; 48: 4195
- 2h Chernyak N, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2743
- 2i Kopp M, Lancelot J.-C, Dagdag S, Miel H, Rault S. J. Heterocycl. Chem. 2002; 39: 1061
- 3a Cao S, Xin L, Liu Y, Wan J.-P, Wen C. RSC Adv. 2015; 5: 27372
- 3b Chen J, Song G, Pan C.-L, Li X. Org. Lett. 2010; 12: 5426
- 3c Keenan RM, Miller WH, Barton LS, Bondinell WE, Cousins RD, Eppley DF, Hwang S.-M, Kwon C, Lago MA, Nguyen TT, Smith BR, Uzinskas IN, Yuan CC. K. Bioorg. Med. Chem. Lett. 1999; 9: 1801
- 4 Coleman MD. Role of Metabolism in Drug Toxicity . In Human Drug Metabolism: An Introduction, 2nd ed. John Wiley & Sons; Chichester: 2010: 252-258
- 5a Londregan AT, Jennings S, Wei L. Org. Lett. 2010; 12: 5254
- 5b Bollinger JL, Oberholzer M, Frech CM. Adv. Synth. Catal. 2011; 353: 945 ; and references therein
- 6a Storz T. Org. Process Res. Dev. 2004; 8: 663
- 6b Storz T, Bartberger MD, Sukits S, Wilde C, Soukup T. Synthesis 2008; 201
- 7 Yin J, Xiang B, Huffman MA, Raab CE, Davies IW. J. Org. Chem. 2007; 72: 4554
- 8 Farrell RP, Elipe MV. S, Bartberger MD, Tedrow JS, Vounatsos F. Org. Lett. 2013; 15: 168
- 9a Kutasevich AV, Perevalov VP, Mityanov VS. Eur. J. Org. Chem. 2021; 357
- 9b Malykhin RS, Sukhorukov AY. Adv. Synth. Catal. 2021; 363: 3170
- 9c Wang D, Désaubry L, Li G, Huang M. Adv. Synth. Catal. 2021; 363: 2
- 9d Wachi K, Terada A. Chem. Pharm. Bull. 1980; 28: 465
- 9e Abramovitch RA, You-Xiong W. Heterocycles 1987; 26: 2065
- 9f Medley JW, Movassaghi M. J. Org. Chem. 2009; 74: 1341
- 9g Vamos M, Cosford ND. P. J. Org. Chem. 2014; 79: 2274
- 9h Manley PJ, Bilodeau MT. Org. Lett. 2002; 4: 3127
- 10 Xiong H, Hoye AT, Fan K.-H, Li X, Clemens J, Horchler CL, Lim NC, Attardo G. Org. Lett. 2015; 17: 3726
- 11a Zincke T, Heuser G, Möller W. Justus Liebigs Ann. Chem. 1904; 330: 361
- 11b Cheng W.-C, Kurth MJ. Org. Prep. Proced. Int. 2002; 34: 585
- 12a Seefeld MA, Hamajima T, Jung DK, Nakamura H, Reid PR, Reno MJ, Rouse MB, Heerding DA, Tang J, Wang J. WO 2007/076423, 2007
- 12b Lam PY. S, Clark CG, Li R, Pinto DJ. P, Orwat MJ, Galemmo RA, Fevig JM, Teleha CA, Alexander RS, Smallwood AM, Rossi KA, Wright MR, Bai SA, He K, Luettgen JM, Wong PC, Knabb RM, Wexler RR. J. Med. Chem. 2003; 46: 4405
- 12c Pohlmann J, Stieger M, Reinelt S, Lane H. WO 2016/128465, 2016
- 13a Yakovlev MY, Kadushkin AV, Solov’eva NP, Anisimova OS, Granik VG. Tetrahedron 1998; 5775
- 13b Krichevsky ES, Alekseeva LM, Granik VG. Chem. Heterocycl. Compd. 2003; 39: 328
- 13c Borzsonyi G, Alsbaiee A, Beingessner RL, Fenniri H. J. Org. Chem. 2010; 75: 7233
- 13d Dorsch D, Bertram C, Tsaklakidis C, Mederski W, Gleitz J, Barnes C. WO 2003/013531, 2003
- 13e Hewawasam P, Fan W, Knipe J, Moon SL, Boissard CG, Gribkoff VK, Starrett JE. Jr. Bioorg. Med. Chem. Lett. 2002; 12: 1779
- 14a Deev SL, Khalymbadzha IA, Shestakova TS, Charushin VN, Chupakhin ON. RSC Adv. 2009; 9: 26856 ; and references therein
- 14b Elmore CS. Annu. Rep. Med. Chem. 2009; 44: 515
- 15 1-(5-Phenylpyridin-2-yl)pyridinium Trifluoroacetate (3d); Typical Procedure TFAA (280 μL, 2.0 mmol, 2.0 equiv) was added to a stirred solution of 3-phenylpyridine 1-oxide (171 mg, 1.0 mmol) and pyridine (400 μL, 5.0 mmol, 5.0 equiv) in CH2Cl2 (5 mL, 0.2 M) at 0 °C, and the resulting mixture was stirred at r.t. until the reaction was complete (LCMS). The mixture was then concentrated, dissolved in a minimal amount of CH2Cl2, and triturated from rapidly stirred Et2O. The crude pyridinium salt was isolated by filtration, washed with Et2O, and purified by chromatography [silica gel (12 g), 0–40% MeOH–CH2Cl2] to give an off-white solid; yield: 312 mg (0.90 mmol, 90%). 1H NMR (400 MHz, CDCl3): δ = 10.15 (d, J = 5.6 Hz, 2 H), 8.73–8.62 (m, 2 H), 8.35 (t, J = 6.4 Hz, 2 H), 8.25 (t, J = 7.8 Hz, 1 H), 8.06–8.01 (m, 3 H), 7.54–7.50 (m, 3 H). 19F NMR (376.5 MHz, CDCl3): δ = –75.2. 13C NMR (100 MHz, CDCl3): δ = 158.1, 151.1, 147.9, 142.6, 142.5, 136.5, 130.8, 129.4, 129.0, 127.3, 123.5, 116.0, (F3CCO2 – signal not included). HRMS (ESI+): m/z [M]+ calcd for C16H13N2: 233.1073; found: 233.1076. 5-Phenylpyridin-2-amine (4b); Typical Procedure TFAA (280 μL, 2.0 mmol, 2 equiv) was added to a stirred solution of 3-phenylpyridine 1-oxide (171 mg. 1.0 mmol) and pyridine (400 μL, 5.0 mmol, 5 equiv) in MeCN (5.0 mL, 0.2 M) at 0 °C, and the resulting mixture was stirred at r.t. until the reaction was complete (LCMS). The reaction was then concentrated, dissolved in a minimal amount of CH2Cl2, and triturated from rapidly stirred Et2O. The crude pyridinium salt was isolated by filtration and washed with Et2O. The off-white solid was treated with hydrazine monohydrate (240 μL, 5.0 mmol, 5 equiv) in EtOH (5.0 mL) at 80 °C for 2 h, The resulting mixture was concentrated over silica gel with excess solid NaHCO3. The residue was purified by column chromatography (silica gel, 0–100% EtOAc–hexane) to give an off-white solid; yield:142 mg (0.84 mmol, 84%). 1H NMR (400 MHz, DMSO-d 6): δ = 8.25 (dd, J = 0.7, 2.5 Hz, 1 H), 7.69 (dd, J = 2.5, 8.6 Hz, 1 H), 7.56–7.54 (m, 2 H), 7.42–7.37 (m, 2 H), 7.28–7.24 (m, 1 H), 6.55 (dd, J = 0.7, 8.6 Hz, 1 H), 6.01 (br s, 2 H). 13C NMR (100 MHz, DMSO-d 6) δ = 159.1, 145.6, 138.1, 135.2, 128.8, 126.1, 125.3, 123.9, 107.9. HRMS (ESI+) m/z [M + H]+ calcd for C11H11N2: 171.0917; found: 171.0917.
For selected examples, see: