Synthesis 2022; 54(07): 1785-1792
DOI: 10.1055/s-0040-1719863
paper

Highly Enantioselective Michael Addition of Cyclic Diketones to β,γ-Unsaturated α-Keto Esters Catalyzed by Squaramide Organocatalyst

Zhi-Wei Ma
a   Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450046, P. R. of China
,
Chuan-Chuan Wang
a   Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450046, P. R. of China
,
Xiao-Pei Chen
a   Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450046, P. R. of China
,
Ai-Qin Li
a   Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450046, P. R. of China
,
Jing-Chao Tao
b   College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, P. R. of China
,
Quan-Jian Lv
a   Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou 450046, P. R. of China
› Author Affiliations
We are grateful for the financial support of the Natural Science Foundation of Henan Province (No. 202300410188), Training Plan for Young Key Teachers in Colleges and Universities in Henan Province (2021GGJS173) and the Key Scientific Research Project of Colleges and Universities of Henan Province (No. 20A150020).


Abstract

A new tertiary amine-squaramide organocatalyst has been developed and applied to the asymmetric Michael addition of cyclic diketones to β,γ-unsaturated α-keto esters. The catalyst system performed well with a low catalyst loading of 1 mol% under mild reaction conditions. A series of synthetically and pharmaceutically useful chiral bicyclic compounds were obtained in high yields (up to 97%) with excellent enantioselectivities (up to 99 % ee). Furthermore, this catalytic system can be used efficiently in large-scale reactions with the yields and enantioselectivities being maintained.

Supporting Information



Publication History

Received: 01 September 2021

Accepted after revision: 17 November 2021

Article published online:
10 January 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gangliang H, Xue L. Curr. Org. Synth. 2017; 14: 568
    • 1b Wang K, Kong W. Chin. J. Chem. 2018; 36: 247
    • 1c Zhang Y, Wang W. Catal. Sci. Technol. 2012; 2: 42
    • 1d Shagufta K, Ameer Fawad Z, Sajjad A, Rabia A, Iqra K, Wajiha Q, Attia M. Curr. Org. Chem. 2020; 24: 1397
    • 1e Reznikov AN, Klimochkin YN. Synthesis 2020; 52: 781
    • 1f Das T, Mohapatra S, Mishra NP, Nayak S, Raiguru BP. ChemistrySelect 2021; 6: 3745
    • 2a Rong Z.-Q, Jia M.-Q, You S.-L. Org. Lett. 2011; 13: 4080
    • 2b Ghosh SK, Dhungana K, Headley AD, Ni B. Org. Biomol. Chem. 2012; 10: 8322
    • 2c Feu KS, Deobald AM, Narayanaperumal S, Corrêa AG, Weber Paixão M. Eur. J. Org. Chem. 2013; 5917
    • 2d Huang H, Kang JY. Org. Lett. 2016; 18: 4372
    • 2e Wang Q, Wang W, Ye L, Yang X, Li X, Zhao Z, Li X. Molecules 2017; 22: 1096
    • 2f Wang W, Ye L, Shi Z, Zhao Z, Li X. RSC Adv. 2018; 8: 41699
    • 2g Roy SJ. S, Mukherjee S. J. Org. Chem. 2018; 83: 12071
    • 2h Bakó P, Nemcsok T, Rapi Z, Keglevich G. Curr. Org. Chem. 2020; 24: 746
  • 3 Desimoni G, Faita G, Quadrelli P. Chem. Rev. 2013; 113: 5924
  • 4 Halland N, Velgaard T, Jørgensen KA. J. Org. Chem. 2003; 68: 5067
    • 5a Calter MA, Wang J. Org. Lett. 2009; 11: 2205
    • 5b Xu D.-Q, Wang Y.-F, Zhang W, Luo S.-P, Zhong A.-G, Xia A.-B, Xu Z.-Y. Chem. Eur. J. 2010; 16: 4177
    • 5c Gao Y, Ren Q, Wang L, Wang J. Chem. Eur. J. 2010; 16: 13068
    • 5d Chen X.-K, Zheng C.-W, Zhao S.-L, Chai Z, Yang Y.-Q, Zhao G, Cao W.-G. Adv. Synth. Catal. 2010; 352: 1648
    • 5e Wang Y.-F, Wang K, Zhang W, Zhang B.-B, Zhang C.-X, Xu D.-Q. Eur. J. Org. Chem. 2012; 3691
    • 5f Rong C, Pan H, Liu M, Tian H, Shi Y. Chem. Eur. J. 2016; 22: 2887
    • 5g Dajek M, Pruszczyńska A, Konieczny KA, Kowalczyk R. Adv. Synth. Catal. 2020; 362: 3613
    • 5h Dong Z, Feng J, Fu X, Liu X, Lin L, Feng X. Chem. Eur. J. 2011; 17: 1118
    • 5i Liu S, Xu Z.-H, Wang X, Zhu H.-R, Wang M.-C. J. Org. Chem. 2019; 84: 13881
    • 6a Ma Z.-W, Liu Y.-X, Zhang W.-J, Tao Y, Zhu Y, Tao J.-C, Tang M.-S. Eur. J. Org. Chem. 2011; 6747
    • 6b Ma Z.-W, Liu Y.-X, Li P.-L, Ren H, Zhu Y, Tao J.-C. Tetrahedron: Asymmetry 2011; 22: 1740
    • 6c Song Z.-T, Zhang T, Du H.-L, Ma Z.-W, Zhang C.-H, Tao J.-C. Chirality 2014; 26: 121
    • 7a Ma Z.-W, Liu Y.-X, Huo L.-J, Gao X, Tao J.-C. Tetrahedron: Asymmetry 2012; 23: 443
    • 7b Ma Z.-W, Wu Y, Sun B, Du H.-L, Shi W.-M, Tao J.-C. Tetrahedron: Asymmetry 2013; 24: 7
    • 8a Ma Z.-W, Liu X.-F, Sun B, Huang X.-H, Tao J.-C. Synthesis 2017; 49: 1307
    • 8b Ma Z.-W, Liu X.-F, Liu J.-T, Liu Z.-J, Tao J.-C. Tetrahedron Lett. 2017; 58: 4487
    • 8c Ma Z.-W, Liu X.-F, Liu J.-T, Tao J.-C. Chin. J. Org. Chem. 2018; 38: 183
  • 9 Zhu Y, Malerich JP, Rawal VH. Angew. Chem. Int. Ed. 2010; 49: 15
  • 10 Song X.-X, Liu J, Liu M.-M, Wang X, Zhang Z.-F, Wang M.-C, Chang J.-B. Tetrahedron 2014; 70: 5468
  • 11 Dajek M, Kowalczyk R, Boratyński PJ. Catal. Sci. Technol. 2018; 8: 4358