Subscribe to RSS
DOI: 10.1055/s-0040-1719851
1,4-Azaborines: Origin, Modern Synthesis, and Applications as Optoelectronic Materials
I. Shin acknowledges financial support from National Research Foundation of Korea (NRF-2019R1C1C1005737). H. N. Lim acknowledges financial support from the National Research Foundation of Korea (NRF-2019R1C1C1004970). W. P. Hong acknowledges financial support from National Research Foundation of Korea (NRF-2020R1I1A3071821).
Abstract
This short review summarizes the origins and recent progress in 1,4-azaborine research, focusing on synthetic methodologies. Academic laboratories have made significant efforts to generate boron-nitrogen-containing heteroaromatic compounds that mimic arenes. 1,2-, 1,3-, and 1,4-Azaborine motifs have provided breakthrough molecules in applications ranging from medicines to materials. Owing to recent advances in polyaromatic 1,4-azaborine synthesis and applications in industry, the research field is currently undergoing a renaissance. Photo- and electroluminescent properties driven by distinct structural variations are key components in the design of novel 1,4-azaborine structures. In this review, seminal reports on the synthesis of simple 1,4-azaborines to complex π-extended structures are briefly highlighted together along with key optoelectronic properties.
1 Introduction
2 Non-Fused 1,4-Azaborines
3 Monobenzo-Fused 1,4-Azaborines
4 Dibenzo-Fused 1,4-Azaborines and Their Derivatives
5 Ladder-Type 1,4-Azaborines
6 Complex 1,4-Azaborines
7 Optoelectronic Properties of Key 1,4-Azaborines
8 Conclusion and Outlook
Publication History
Received: 27 August 2021
Accepted after revision: 27 September 2021
Article published online:
04 November 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2005
- 1b Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 1c Cuenca AB, Shishido R, Ito H, Fernández E. Chem. Soc. Rev. 2017; 46: 415
- 1d Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 2a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 2b Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
- 2c Brown HC, Cole TE. Organometallics 1983; 2: 1316
- 2d Dimitrijević E, Taylor MS. ACS Catal. 2013; 3: 945
- 3a Baker SJ, Ding CZ, Akama T, Zhang Y.-K, Hernandez C, Xia Y, Hernandez V. Future Med. Chem. 2009; 1: 1275
- 3b Adams J, Behnke M, Chen SW, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma YT, Plamondon L, Stein RL. Bioorg. Med. Chem. Lett. 1998; 8: 333
- 4a Adamczyk-Woźniak A, Borys KM, Sporzyński A. Chem. Rev. 2015; 115: 5224
- 4b Hoy SM. Am. J. Clin. Dermatol. 2017; 18: 837
- 5 Fernandes GF. S, Denny WA, Santos JL. D. Eur. J. Med. Chem. 2019; 179: 791
- 6a Das BC, Thapa P, Karki R, Schinke C, Das S, Kambhampati S, Banerjee SK, Veldhuizen PV, Verma A, Weiss LM, Evans T. Future Med. Chem. 2013; 5: 653
- 6b Scorei RI, Popa R. Anti-Cancer Agents Med. Chem. 2010; 10: 346
- 7a James TD, Samankumara Sandanayake KR. A, Shinkai S. Nature 1995; 374: 345
- 7b Zhao J, Fyles TM, James TD. Angew. Chem. Int. Ed. 2004; 43: 3461
- 7c Singaram B, Wessling RA. WO 2002046752, 2002
- 8 Fang G, Wang H, Bian Z, Sun J, Liu A, Fang H, Liu B, Yao Q, Wu Z. RSC Adv. 2018; 8: 29400
- 9a Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
- 9b Wu Z, Nitsch J, Schuster J, Friedrich A, Edkins K, Loebnitz M, Dinkelbach F, Stepanenko V, Würthner F, Marian CM. Angew. Chem. Int. Ed. 2020; 59: 17137
- 9c Rauch F, Krebs J, Günther J, Friedrich A, Hähnel M, Krummenacher I, Braunschweig H, Finze M, Marder TB. Chem. Eur. J. 2020; 26: 10626
- 9d Rauch F, Endres P, Friedrich A, Sieh D, Haehnel M, Krummenacher I, Braunschweig H, Finze M, Ji L, Marder TB. Chem. Eur. J. 2020; 26: 12951
- 9e Lorbach A, Hübner A, Wagner M. Dalton Trans. 2012; 41: 6048
- 10 Brown HC, Dodson VH. J. Am. Chem. Soc. 1957; 79: 2302
- 11 Lee H, Karthik D, Lampande R, Ryu JH, Kwon JH. Front. Chem. 2020; 8: 373
- 12 Yang K, Song Q. Acc. Chem. Res. 2021; 54: 2298
- 13a Frath D, Massue J, Ulrich G, Ziessel R. Angew. Chem. Int. Ed. 2014; 53: 2290
- 13b Li G, Lou W, Wang D, Deng C, Zhang Q. ACS Appl. Mater. Interfaces 2019; 11: 32209
- 14a Giustra ZX, Liu S.-Y. J. Am. Chem. Soc. 2018; 140: 1184
- 14b Liu S.-Y, Stephan DW. Chem. Soc. Rev. 2019; 48: 3434
- 15 Dewar MJ. S, Marr PA. J. Am. Chem. Soc. 1962; 84: 3782
- 16a McConnell CR, Liu S.-Y. Chem. Soc. Rev. 2019; 48: 3436
- 16b Abengózar A, García-García P, Fernández-Rodríguez MA, Sucunza D, Vaquero JJ. Adv. Heterocycl. Chem. 2021; 135: 197
- 17a Baranac-Stojanović M. Chem. Eur. J. 2014; 20: 16558
- 17b Wang X.-Y, Wang J.-Y, Pei J. Chem. Eur. J. 2015; 21: 3528
- 18 Maitlis PM. J. Chem. Soc. 1961; 425
- 19 Agou T, Kobayashi J, Kawashima T. Org. Lett. 2006; 8: 2241
- 20 Braunschweig H, Damme A, Jimenez-Halla JO. C, Pfaffinger B, Radacki K, Wolf J. Angew. Chem. Int. Ed. 2012; 51: 10034
- 21 Xu S, Zhang Y, Li B, Liu S.-Y. J. Am. Chem. Soc. 2016; 138: 14566
- 22 Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J, Ono Y, Ikuta T. Adv. Mater. 2016; 28: 2777
- 23 Campbell PG, Marwitz AJ. V, Liu S.-Y. Angew. Chem. Int. Ed. 2012; 51: 6074
- 24 Oda S, Hatakeyama T. Bull. Chem. Soc. Jpn. 2021; 94: 950
- 25 Liu X, Zhang Y, Li B, Zakharov LN, Vasiliu M, Dixon DA, Liu S.-Y. Angew. Chem. Int. Ed. 2016; 55: 8333
- 26 Xu S, Haeffner F, Li B, Zakharov LN, Liu S.-Y. Angew. Chem. Int. Ed. 2014; 53: 6795
- 27 Chinnapattu M, Sathiyanarayanan KI, Iyer PS. RSC Adv. 2015; 5: 37716
- 28 Kranz M, Hampel F, Clark T. J. Chem. Soc., Chem. Commun. 1992; 1247
- 29 Ishikawa Y, Suzuki K, Hayashi K, Nema S.-y, Yamashita M. Org. Lett. 2019; 21: 1722
- 30a Agou T, Kojima T, Kobayashi J, Kawashima T. Org. Lett. 2009; 11: 3534
- 30b Agou T, Sekine M, Kobayashi J, Kawashima T. Chem. Eur. J. 2009; 15: 5056
- 30c Agou T, Sekine M, Kobayashi J, Kawashima T. Chem. Commun. 2009; 1894
- 30d Park IS, Matsuo K, Aizawa N, Yasuda T. Adv. Funct. Mater. 2018; 28: 1802031
- 30e Wu T.-L, Lo S.-H, Chang Y.-C, Huang M.-J, Cheng C.-H. ACS Appl. Mater. Interfaces 2009; 11: 10768
- 31 Igarashi T, Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2017; 56: 2069
- 32 Agou T, Arai H, Kawashima T. Chem. Lett. 2010; 39: 612
- 33 Nagata M, Oshiro T, Mizuhata Y, Tokitoh N, Hosoya T, Yamada S, Konno T, Fukumoto H, Kubota T, Agou T. Bull. Chem. Soc. Jpn. 2021; 94: 21
- 34 Mitsudo K, Shigemori K, Mandai H, Wakamiya A, Suga S. Org. Lett. 2018; 20: 7336
- 35 Agou T, Kobayashi J, Kawashima T. Chem. Eur. J. 2007; 13: 8051
- 36 Agou T, Kobayashi J, Kawashima T. Chem. Commun. 2007; 3204
- 37 Suresh SM, Duda E, Hall D, Yao Z, Bagnich S, Slawin AM. Z, Bässler H, Beljonne D, Buck M, Olivier Y, Köhler A, Zysman-Colman E. J. Am. Chem. Soc. 2020; 142: 6588
- 38a Guram AS, King AO, Allen JG, Wang X, Schenkel LB, Chan J, Bunel E, Faul MM, Larson RD, Martinelli MJ, Reider P. Org. Lett. 2006; 8: 1787
- 38b Chartoire A, Lesieur M, Slawin MZ, Nolan S, Cazin CS. Organometallics 2011; 30: 4432
- 39a Hatakeyama T, Hashimoto S, Seki S, Nakamura M. J. Am. Chem. Soc. 2011; 133: 18614
- 39b Hatakeyama T, Hashimoto S, Oba T, Nakamura M. J. Am. Chem. Soc. 2012; 134: 19600
- 40 Yin Q, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 3712 ; and references therein
- 41 Han SH, Jeong JH, Yoo JW, Lee JY. J. Mater. Chem. C 2019; 7: 3082
- 42 Nakatsuka S, Gotoh H, Kinoshita K, Yasuda N, Hatakeyama T. Angew. Chem. Int. Ed. 2017; 56: 5087
- 43 Shuto A, Kushida T, Fukushima T, Kaji H, Yamahuchi S. Org. Lett. 2013; 15: 6234
- 44 Kushida T, Shuto A, Yoshio M, Kato T, Yamaguchi S. Angew. Chem. Int. Ed. 2015; 54: 6922
- 45 Ingoglia BT, Wagen CC, Buchwald SL. Tetrahedron 2019; 75: 4199
- 46 Wolfe JP, Buchwald SL. J. Org. Chem. 2000; 65: 1144
- 47 Hartwig JF, Kawatsura M, Hauck SI, Shaughnessy KH, Alcazar-Roman LM. J. Org. Chem. 1999; 64: 5575
- 48 Maiti D, Fors BP, Henderson JL, Nakamura Y, Buchwald SL. Chem. Sci. 2011; 2: 57
- 49 Liang X, Yan Z.-P, Han H.-B, Wu Z.-G, Zheng Y.-X, Meng H, Zuo J.-L, Huang W. Angew. Chem. Int. Ed. 2018; 57: 11316
- 50 Hirai H, Nakajima K, Nakatsuka S, Shiren K, Ni J, Nomura S, Ibuka T, Hatakeyama T. Angew. Chem. Int. Ed. 2015; 54: 13581
- 51 Oda S, Kumano W, Hama T, Kawasumi R, Yoshiura K, Hatakeyama T. Angew. Chem. Int. Ed. 2021; 60: 2882
- 52 Zhang Y, Zhang D, Wei J, Liu Z, Liu Z, Duan L. Angew. Chem. Int. Ed. 2019; 58: 16912
- 53 Zhang Y, Zhang D, Wei J, Hong X, Lu Y, Hu D, Li D, Liu Z, Chen Y, Duan L. Angew. Chem. Int. Ed. 2020; 59: 17499
- 54 Xu Y, Li C, Li Z, Wang Q, Cai X, Wei J, Wang Y. Angew. Chem. Int. Ed. 2020; 59: 17442
- 55 Oda S, Kawakami B, Kawasumi R, Okita R, Hatakeyama T. Org. Lett. 2019; 21: 9311
- 56 Knöller JA, Meng GM, Wang W, Hall D, Pershin A, Berjonne D, Olivier Y, Laschat S, Zysman-Colman E, Wang S. Angew. Chem. Int. Ed. 2020; 59: 3156
- 57 Numano M, Nagami N, Nakatsuka S, Katayama T, Nakajima K, Tatsumi S, Yasuda N, Hatakeyama T. Chem. Eur. J. 2016; 22: 11574
- 58 Matsui K, Oda S, Yoshiura K, Nakajima K, Yasuda N, Hatakeyama T. J. Am. Chem. Soc. 2018; 140: 1195
- 59a Bosdet MJ. D, Piers WE, Sorensen TS, Parvez M. Can. J. Chem. 2010; 88: 426
- 59b Wang X.-Y, Zhuang F.-D, Wang R.-B, Wang X.-C, Cao X.-Y, Pei J. J. Am. Chem. Soc. 2014; 136: 3764
- 59c Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor M.-J, Schaub R, Bettinger HF. Angew. Chem. Int. Ed. 2015; 54: 8284
- 60 Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T. Nat. Photonics 2019; 13: 678
- 61 Yang M, Park IS, Yasuda T. J. Am. Chem. Soc. 2020; 142: 19468
- 62 Liu Y, Xiao X, Ran Y, Bin Z, You J. Chem. Sci. 2021; 12: 9408
For B–N doped nanographenes, see: