Synthesis 2022; 54(03): 723-731
DOI: 10.1055/s-0040-1719848
paper

Tropane-Based Dispirocyclic Oxiranes and Spirocyclic Ketones

Andrii Gerasov
a   I.F. Lab Ltd., Representative of Life Chemicals Inc. in Ukraine, 5 Murmanska St., Kyiv, 02000, Ukraine
,
Rodion Boiko
a   I.F. Lab Ltd., Representative of Life Chemicals Inc. in Ukraine, 5 Murmanska St., Kyiv, 02000, Ukraine
,
Grygoriy Dolgonos
a   I.F. Lab Ltd., Representative of Life Chemicals Inc. in Ukraine, 5 Murmanska St., Kyiv, 02000, Ukraine
,
Aleksandr Mandzhulo
a   I.F. Lab Ltd., Representative of Life Chemicals Inc. in Ukraine, 5 Murmanska St., Kyiv, 02000, Ukraine
b   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska St., Kyiv, 02000, Ukraine
,
Alexander Shivanyuk
a   I.F. Lab Ltd., Representative of Life Chemicals Inc. in Ukraine, 5 Murmanska St., Kyiv, 02000, Ukraine
,
Volodymyr Fetyukhin
a   I.F. Lab Ltd., Representative of Life Chemicals Inc. in Ukraine, 5 Murmanska St., Kyiv, 02000, Ukraine
,
a   I.F. Lab Ltd., Representative of Life Chemicals Inc. in Ukraine, 5 Murmanska St., Kyiv, 02000, Ukraine
› Author Affiliations
This research was supported by I.F. Lab Ltd., Representative of Life Chemicals Inc. in Ukraine.


Abstract

The Prilezhaev epoxidation of N-Boc-protected 3-cyclobutylidenetropane 1a affords a 1:2 mixture of compounds 2a and 2b, in which tropane and cyclobutane fragments are spiro-connected to the oxirane ring in endo- and exo-fashion, respectively. The exo-isomer 2b is obtained in 89% yield and 97% selectivity via the dioxirane oxidation of 1a. BF3-catalyzed isomerization of exo-oxirane 2b results in a 1:1 mixture of the spirocyclic ketones endo 3a and exo 3b containing spiro-connected tropane and cyclopentanone rings, while endo-epoxide 2a gives exclusively endo-ketone 3a. Prilezhaev and dioxirane epoxidations of N-Boc-protected 3-cyclopropylidenetropane 1b affords a mixture of endo- and exo-oxiranes 2c and 2d. Compounds 2c and 2d are not isolated in individual forms since they isomerize into a mixture of spirocyclic ketones endo 3c and exo 3d. Removal of the Boc groups from ketones 3ad gives the corresponding hydrochlorides of aminoketones 4ad in quantitative yields. Quantum chemical calculations predict that the rearrangement of endo-epoxides into the corresponding endo-ketones involving BF3-containing intermediates has by 4.4–7.9 kcal/mol lower activation barriers than the respective conversion of the exo-epoxides into exo-ketones. The cyclopropyl-containing dispiroepoxides 2c and 2d are predicted to interconvert faster into the corresponding ketones compared to their less strained cyclobutyl counterparts 2a and 2b.

Supporting Information



Publication History

Received: 04 August 2021

Accepted after revision: 30 September 2021

Article published online:
06 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Atanasov AG, Zotchev SB, Dirsch VM. Nat. Rev. Drug. Discov. 2021; 20: 200
    • 1b Newman DJ, Cragg GM. J. Nat. Prod. 2020; 83: 770
    • 1c Newman DJ, Cragg GM. J. Nat. Prod. 2016; 79: 629
    • 2a Blakemore DC, Castro L, Churcher I. Nat. Chem. 2018; 10: 383
    • 2b Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Proc. Natl. Acad. Sci. U.S.A. 2017; 114: 5601
    • 3a O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 3b Zhao T, Li S, Wang J, Zhou Q, Yang C, Bai F, Lan X, Chen M, Liao Z. ACS Synth. Biol. 2020; 9: 437
    • 3c Drake LR, Scott PJ. H. ACS Chem. Neurosci. 2018; 9: 2358
  • 4 Lowe RA, Taylor D, Chibale K, Nelson A, Marsden SP. Bioorg. Med. Chem. 2020; 28: 115442
  • 5 Ge Y, Ye F, Liu J, Yang J, Spannenberg A, Jiao H, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2020; 59: 21585
    • 6a Dow RL, Schneider SR, Paight ES, Hank RF, Chiang P, Cornelius P, Lee E, Newsome WP, Swick AG, Spitzer J, Hargrove DM, Patterson TA, Pandit J, Chrunyk BA, LeMotte PK, Danley DA, Rosner MH, Ammirati MJ, Simons SP, Schulte GK, Tate BF, DaSilva-Jardine P. Bioorg. Med. Chem. Lett. 2003; 13: 379
    • 6b Parham WE, Egberg DC, Sayed YA, Thraikill RW, Keyser GE, Neu M, Montgomery WC, Jones LD. J. Org. Chem. 1976; 41: 2628
    • 6c Hashizume Y, Hirota M, Koike H, Matsumoto Y, Mihara S, Nakamura H. WO2006134485, 2006
    • 6d Dolente C, Fasching B, Runtz-Schmitt V, Schnider P. WO2016075181, 2016
    • 6e Weires NA, Slutskyy Y, Overman LE. Angew. Chem. Int. Ed. 2019; 58: 8561
    • 7a Zhang L, Drummond E, Brodney MA, Cianfrogna J, Drozda SE, Grimwood S, Vanase-Frawley MA, Villalobos A. Bioorg. Med. Chem. Lett. 2014; 24: 5219
    • 7b Dolle RE, Le Bourdonnec B, Ajello CW, Gu M, Chu G.-H, Tuthill PA, Leister LK, Zhou JQ. WO2005033073, 2005
    • 7c Dolle RE, Le Bourdonnec B, Chu G.-H. US7598261 B2, 2009
    • 7d Hashizume Y, Hirota M, Koike H, Matsumoto Y, Mihara S, Nakamura H. WO2006134486 A2, 2006
    • 7e Bromidge SM, Archer DA, Sammes PG. J. Chem. Soc., Perkin Trans. 1 1990; 353
    • 7f Cignarella G, Villa S, Barlocco D. Eur. J. Med. Chem. 1994; 29: 115
    • 9a Kubas H, Meyer U, Hechenberger M, Klein KU, Plitt P, Zemribo R, Spexgoor HW, van Assema SG, Abel U. Bioorg. Med. Chem. Lett. 2013; 23: 6370
    • 9b Bream RN, Hayes D, Hulcoop DG, Whiteman AJ. Org. Process Res. Dev. 2013; 17: 641
    • 9c Schlienger N, Lund BW, Pawlas J, Badalassi F, Bertozzi F, Lewinski R, Fejzic A, Thygesen MB, Tabatabaei A, Bradley SR, Gardell LR, Piu F, Olsson R. J. Med. Chem. 2009; 52: 7186
    • 10a Alexander M, Lescarbeau A, Kelley EH, Shortsleeves KC, Walters WP, Murcko MA, McLean TH, Gunaydin H, Giordanetto F, Therrien E. WO2019183367 A1, 2019
    • 10b Pei Z, Pastor R, Gazzard L, Parr B, Liu W, Mendonca R, Wu G, Yuen P.-P. WO2019005559 A1, 2019
    • 10c Carpenter JE, Feng J, Jiang J, Kim S.-H, Wang Y, Wu G. WO2019089664 A1, 2019
    • 10d Koul S, Bhuniya D, Mookhtiar K, Bhosale S, Kurhade S, Naik K, Velayutham R, Salunkhe V. WO2014054053 A1, 2014
    • 10e Sakamuri S, George C, Flippen-Anderson J, Kozikowski AP. Tetrahedron Lett. 2000; 41: 2055
    • 10f Blake JF, Boys ML, Chicarelli MJ, Cook AW, Elsayed MS. A, Fell JB, Fischer JP, Hinklin RJ, Jiang Y, McNulty OT. WO2020201991 A1, 2020
  • 11 Gerasov A, Dolgonos GA, Mandzhulo A, Ryabitsky A, Fetyukhin V, Lukin O, Shivanyuk A. Synthesis 2020; 52: 1015
  • 12 Similar selectivity was observed in the synthesis of spiro-tropane-oxiranes, see: Mandzhulo A, Vashchenko I, Gerasov A, Vovk M, Rusanov E, Fetyukhin V, Lukin O, Shivanyuk A. Org. Chem. Front. 2019; 6: 1692
  • 13 Frown M, Shi Y. Synthesis 2000; 1979
  • 14 Zhu Y, Wang Q, Cornwall RG, Shi Y. Chem. Rev. 2014; 114: 8199
    • 15a Huisgen R. Angew. Chem., Int. Ed. Engl. 1977; 16: 572
    • 15b MacDonald HH. J, Crawford RJ. Can. J. Chem. 1972; 50: 428
  • 16 Muetterties EL, Rochow EJ. J. Am. Chem. Soc. 1953; 75: 490
    • 17a Sheldrick G. Acta Crystallogr., Sect. A 2008; 64: 112
    • 17b CCDC 2101005 (2b), CCDC 2101006 (2a), CCDC 2101007 (3a), CCDC 2101008 (3d) and CCDC 2101012 (3c) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
  • 18 Grimme S. J. Chem. Phys. 2003; 118: 9095
    • 19a Hariharan PC, Pople JA. Theor. Chim. Acta 1973; 28: 213
    • 19b Hehre WJ, Ditchfield R, Pople JA. J. Chem. Phys. 1972; 56: 2257
    • 20a Dunning TH. Jr. J. Chem. Phys. 1989; 90: 1007
    • 20b Kendall RA, Dunning TH. Jr, Harrison RJ. J. Chem. Phys. 1992; 96: 6796
  • 21 Chuyko A, Dolgonos G, Shivanyuk A, Fetyukhin V, Lukin O. Synthesis 2021; 53 in press, DOI: DOI: 10.1055/s-0040-1706282.
  • 22 Stoychev GL, Auer AA, Neese F. J. Chem. Theory Comput. 2017; 13: 554
  • 23 Weigend F, Köhn A, Hättig C. J. Chem. Phys. 2002; 116: 3175
    • 24a Neese F. WIREs Comput. Mol. Sci. 2012; 2: 73
    • 24b Neese F. WIREs Comput. Mol. Sci. 2018; 8: e1327