Semin Musculoskelet Radiol 2020; 24(06): 726-750
DOI: 10.1055/s-0040-1719018
Review Article

Detection and Characterization of Musculoskeletal Cancer Using Whole-Body Magnetic Resonance Imaging

1   School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom
2   Guy's & St Thomas' Hospitals, London, United Kingdom
,
Frederic Lecouvet
3   Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
,
1   School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom
4   Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
,
Laura Fayad
5   The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
,
Vasiliki Pasoglou
3   Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
,
Olympia Papakonstantinou
6   2nd Department of Radiology, National and Kapodistrian University of Athens, “Attikon” Hospital, Athens, Greece
,
Shivani Ahlawat
5   The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
,
Christina Messiou
7   The Royal Marsden Hospital, London, United Kingdom
8   The Institute of Cancer Research, London, United Kingdom
,
Marc-André Weber
9   Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany
,
Anwar R. Padhani
8   The Institute of Cancer Research, London, United Kingdom
10   Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
› Author Affiliations

Abstract

Whole-body magnetic resonance imaging (WB-MRI) is gradually being integrated into clinical pathways for the detection, characterization, and staging of malignant tumors including those arising in the musculoskeletal (MSK) system. Although further developments and research are needed, it is now recognized that WB-MRI enables reliable, sensitive, and specific detection and quantification of disease burden, with clinical applications for a variety of disease types and a particular application for skeletal involvement. Advances in imaging techniques now allow the reliable incorporation of WB-MRI into clinical pathways, and guidelines recommending its use are emerging. This review assesses the benefits, clinical applications, limitations, and future capabilities of WB-MRI in the context of other next-generation imaging modalities, as a qualitative and quantitative tool for the detection and characterization of skeletal and soft tissue MSK malignancies.



Publication History

Article published online:
11 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Isaac A, Dalili D, Weber MA. State-of-the-art imaging for diagnosis of metastatic bone disease. Radiologe 2020; March 24 (Epub ahead of print)
  • 2 Tagliafico AS, Isaac A, Bignotti B, Rossi F, Zaottini F, Martinoli C. Nerve tumors: what the MSK radiologist should know. Semin Musculoskelet Radiol 2019; 23 (01) 76-84
  • 3 Afonso PD, Weber MA, Isaac A, Bloem JL. Hip and pelvis bone tumors: can you make it simple?. Semin Musculoskelet Radiol 2019; 23 (03) e37-e57
  • 4 Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol 2019; 23 (03) e68-e81
  • 5 Vander Velde R, Yoon N, Marusyk V. et al. Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat Commun 2020; 11 (01) 2393
  • 6 Barnes A, Alonzi R, Blackledge M. et al. UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer. Br J Radiol 2018; 91 (1081): 20170577
  • 7 Padhani AR, Lecouvet FE, Tunariu N. et al. METastasis Reporting and Data System for Prostate Cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol 2017; 71 (01) 81-92
  • 8 The National Institute for Health and Care Excellence (NICE), Myeloma: diagnosis and management NICE guideline [NG35]. https://www.nice.org.uk/guidance/ng35/chapter/Recommendations#imaging-investigations. Available from: https://www.nice.org.uk/guidance/NG35
  • 9 Saya S, Killick E, Thomas S. SIGNIFY Study Steering Committee. et al; Baseline results from the UK SIGNIFY study: a whole-body MRI screening study in TP53 mutation carriers and matched controls. Fam Cancer 2017; 16 (03) 433-440
  • 10 Bancroft EK, Saya S, Brown E. et al. Psychosocial effects of whole-body MRI screening in adult high-risk pathogenic TP53 mutation carriers: a case-controlled study (SIGNIFY). J Med Genet 2020; 57 (04) 226-236
  • 11 Petralia G, Padhani AR, Pricolo P. Italian Working Group on Magnetic Resonance. et al; Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses. Radiol Med (Torino) 2019; 124 (03) 218-233
  • 12 O'Neill AF, Voss SD, Jagannathan JP. et al. Screening with whole-body magnetic resonance imaging in pediatric subjects with Li-Fraumeni syndrome: a single institution pilot study. Pediatr Blood Cancer 2018;65(02):
  • 13 Msaouel P, Pissimissis N, Halapas A, Koutsilieris M. Mechanisms of bone metastasis in prostate cancer: clinical implications. Best Pract Res Clin Endocrinol Metab 2008; 22 (02) 341-355
  • 14 Futakuchi M, Fukamachi K, Suzui M. Heterogeneity of tumor cells in the bone microenvironment: mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer. Adv Drug Deliv Rev 2016; 99 (Pt B) 206-211
  • 15 Hensel J, Thalmann GN. Biology of bone metastases in prostate cancer. Urology 2016; 92: 6-13
  • 16 Jadaan DY, Jadaan MM, McCabe JP. Cellular plasticity in prostate cancer bone metastasis. Prostate Cancer 2015; 2015: 651580
  • 17 Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D. Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer 2010; 116 (06) 1406-1418
  • 18 Shiozawa Y, Pedersen EA, Havens AM. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 2011; 121 (04) 1298-1312
  • 19 Wang N, Docherty F, Brown HK. et al. Mitotic quiescence, but not unique “stemness,” marks the phenotype of bone metastasis-initiating cells in prostate cancer. FASEB J 2015; 29 (08) 3141-3150
  • 20 Wang N, Docherty FE, Brown HK. et al. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. J Bone Miner Res 2014; 29 (12) 2688-2696
  • 21 Schuettpelz LG, Link DC. Niche competition and cancer metastasis to bone. J Clin Invest 2011; 121 (04) 1253-1255
  • 22 Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer 2011; 11 (06) 411-425
  • 23 Santini D, Galluzzo S, Zoccoli A. et al. New molecular targets in bone metastases. Cancer Treat Rev 2010; 36 (Suppl. 03) S6-S10
  • 24 Dougall WC, Holen I, González Suárez E. Targeting RANKL in metastasis. Bonekey Rep 2014; 3: 519
  • 25 Clarke NW, Hart CA, Brown MD. Molecular mechanisms of metastasis in prostate cancer. Asian J Androl 2009; 11 (01) 57-67
  • 26 Abrahamsson PA. Pathophysiology of bone metastases in prostate cancer. Eur Urol Suppl 2004; 3 (05) 3-9
  • 27 Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev 2014; 33 (2–3): 527-543
  • 28 Morrissey C, Roudier MP, Dowell A. et al. Effects of androgen deprivation therapy and bisphosphonate treatment on bone in patients with metastatic castration-resistant prostate cancer: results from the University of Washington Rapid Autopsy Series. J Bone Miner Res 2013; 28 (02) 333-340
  • 29 Roudier MP, Morrissey C, True LD, Higano CS, Vessella RL, Ott SM. Histopathological assessment of prostate cancer bone osteoblastic metastases. J Urol 2008; 180 (03) 1154-1160
  • 30 Garnero P, Buchs N, Zekri J, Rizzoli R, Coleman RE, Delmas PD. Markers of bone turnover for the management of patients with bone metastases from prostate cancer. Br J Cancer 2000; 82 (04) 858-864
  • 31 Berruti A, Dogliotti L, Gorzegno G. et al. Differential patterns of bone turnover in relation to bone pain and disease extent in bone in cancer patients with skeletal metastases. Clin Chem 1999; 45 (8 Pt 1): 1240-1247
  • 32 Clarke NW, McClure J, George NJ. Morphometric evidence for bone resorption and replacement in prostate cancer. Br J Urol 1991; 68 (01) 74-80
  • 33 Vargas HA, Wassberg C, Fox JJ. et al. Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology 2014; 271 (01) 220-229
  • 34 Lecouvet FE, Larbi A, Pasoglou V. et al. MRI for response assessment in metastatic bone disease. Eur Radiol 2013; 23 (07) 1986-1997
  • 35 Coleman RE, Croucher PI, Padhani AR. et al. Bone metastases. Nat Rev Dis Primers 2020; 15 ;6(1): 83
  • 36 Lalam R, Bloem JL, Noebauer-Huhmann IM. et al. ESSR Consensus Document for Detection, Characterization, and Referral Pathway for Tumors and Tumorlike Lesions of Bone. Semin Musculoskelet Radiol 2017; 21 (05) 630-647
  • 37 Panchmatia JR, Isaac A, Muthukumar T, Gibson AJ, Lehovsky J. The 10 key steps for radiographic analysis of adolescent idiopathic scoliosis. Clin Radiol 2015; 70 (03) 235-242
  • 38 Afonso PD, Isaac A, Villagrán JM. Chondroid tumors as incidental findings and differential diagnosis between enchondromas and low-grade chondrosarcomas. Semin Musculoskelet Radiol 2019; 23 (01) 3-18
  • 39 Dimopoulos M, Terpos E, Comenzo RL. IMWG. et al. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia 2009; 23 (09) 1545-1556
  • 40 Agrawal K, Marafi F, Gnanasegaran G, Van der Wall H, Fogelman I. Pitfalls and limitations of radionuclide planar and hybrid bone imaging. Semin Nucl Med 2015; 45 (05) 347-372
  • 41 Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 2014; 43 (11) 1503-1513
  • 42 Messiou C, Hillengass J, Delorme S. et al. Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology 2019; 291 (01) 5-13
  • 43 Parker CC, James ND, Brawley CD. Systemic Therapy for Advanced or Metastatic Prostate cancer: Evaluation of Drug Efficacy (STAMPEDE) investigators. et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet 2018; 392 (10162): 2353-2366
  • 44 Lecouvet FE, Lhommel R, Pasoglou V, Larbi A, Jamar F, Tombal B. Novel imaging techniques reshape the landscape in high-risk prostate cancers. Curr Opin Urol 2013; 23 (04) 323-330
  • 45 Nicolas W, Cortes-Penfield BW, Trautner RJ. . Prostate cancer imaging with novel PET tracers. Physiol Behav 2017; 176 (05) 139-148
  • 46 Padhani AR, Lecouvet FE, Tunariu N. et al. Rationale for modernising imaging in advanced prostate cancer. Eur Urol Focus 2017; 3 (2–3): 223-239
  • 47 Schmidt GP, Schoenberg SO, Schmid R. et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 2007; 17 (04) 939-949
  • 48 Koh DM, Blackledge M, Padhani AR. et al. Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol 2012; 199 (02) 252-262
  • 49 Lecouvet FE. Whole-body MR imaging: musculoskeletal applications. Radiology 2016; 279 (02) 345-365
  • 50 Schraml C, Schwenzer NF, Sperling O. et al. Staging of neuroendocrine tumours: comparison of [68Ga]DOTATOC multiphase PET/CT and whole-body MRI. Cancer Imaging 2013; 13 (01) 63-72
  • 51 Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 2011; 21 (12) 2604-2617
  • 52 Prasad A, Visweswaran S, Kanagaraj K. et al. 18F-FDG PET/CT scanning: biological effects on patients: entrance surface dose, DNA damage, and chromosome aberrations in lymphocytes. Mutat Res Genet Toxicol Environ Mutagen 2019; 838: 59-66
  • 53 Schumann S, Scherthan H, Frank T. et al. DNA damage in blood leukocytes of prostate cancer patients undergoing PET/CT examinations with [68Ga]Ga-Psma I&T. Cancers (Basel) 2020; 12 (02) 1-14
  • 54 Deroose CM, Lecouvet FE, Collette L. et al. Impact of the COVID-19 crisis on imaging in oncological trials. Eur J Nucl Med Mol Imaging 2020; 47 (09) 2054-2058
  • 55 Evans R, Taylor S, Janes S. Streamline trials investigators. et al. Patient experience and perceived acceptability of whole-body magnetic resonance imaging for staging colorectal and lung cancer compared with current staging scans: a qualitative study. BMJ Open 2017; 7 (09) e016391
  • 56 Taylor SA, Mallett S, Ball S. Streamline investigators. et al. Diagnostic accuracy of whole-body MRI versus standard imaging pathways for metastatic disease in newly diagnosed non-small-cell lung cancer: the prospective Streamline L trial. Lancet Respir Med 2019; 7 (06) 523-532
  • 57 Taylor SA, Mallett S, Miles A. et al. Streamlining staging of lung and colorectal cancer with whole body MRI; study protocols for two multicentre, non-randomised, single-arm, prospective diagnostic accuracy studies (Streamline C and Streamline L). BMC Cancer 2017; 17 (01) 299
  • 58 Raad RA, Lala S, Allen JC. et al. Comparison of hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging and positron emission tomography/computed tomography for evaluation of peripheral nerve sheath tumors in patients with neurofibromatosis type 1. World J Nucl Med 2018; 17 (04) 241-248
  • 59 Burke MC, Garg A, Youngner JM, Deshmukh SD, Omar IM. Initial experience with dual-energy computed tomography-guided bone biopsies of bone lesions that are occult on monoenergetic CT. Skeletal Radiol 2019; 48 (04) 605-613
  • 60 Kosmala A, Weng AM, Heidemeier A. et al. Multiple myeloma and dual-energy CT: Diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis. Radiology 2018; 286 (01) 205-213
  • 61 Dimopoulos MA, Hillengass J, Usmani S. et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol 2015; 33 (06) 657-664
  • 62 Margolis NE, Moy L, Sigmund EE. et al. Assessment of aggressiveness of breast cancer using simultaneous 18F-FDG-PET and DCE-MRI: preliminary observation. Clin Nucl Med 2016; 41 (08) e355-e361
  • 63 Dutoit JC, Vanderkerken MA, Verstraete KL. Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma. Eur J Radiol 2013; 82 (09) 1444-1452
  • 64 de Rooij M, Israël B, Tummers M. et al. ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists' training. Eur Radiol 2020; 30 (10) 5404-5416
  • 65 Heidenreich A, Bastian PJ, Bellmunt J. European Association of Urology. et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Update 2013. Eur Urol 2014; 65 (01) 124-137
  • 66 Di Gioia D, Stieber P, Schmidt GP, Nagel D, Heinemann V, Baur-Melnyk A. Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase. Br J Cancer 2015; 112 (05) 809-818
  • 67 Lecouvet FE, Malghem J, Michaux L. et al. Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol 1999; 106 (01) 35-39
  • 68 Hillengass J, Fechtner K, Weber MA. et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 2010; 28 (09) 1606-1610
  • 69 Bäuerle T, Hillengass J, Fechtner K. et al. Multiple myeloma and monoclonal gammopathy of undetermined significance: importance of whole-body versus spinal MR imaging. Radiology 2009; 252 (02) 477-485
  • 70 Papakonstantinou O, Isaac A, Dalili D, Noebauer-Huhmann IM. T2-weighted hypointense tumors and tumor-like lesions. Semin Musculoskelet Radiol 2019; 23 (01) 58-75
  • 71 Chantry A, Kazmi M, Barrington S. British Society for Haematology Guidelines. et al. Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol 2017; 178 (03) 380-393
  • 72 Littooij AS, Kwee TC, Barber I. et al. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol 2014; 24 (05) 1153-1165
  • 73 Wang D, Huo Y, Chen S. et al. Whole-body MRI versus 18F-FDG PET/CT for pretherapeutic assessment and staging of lymphoma: a meta-analysis. OncoTargets Ther 2018; 11: 3597-3608
  • 74 Latifoltojar A, Humphries PD, Menezes LJ. et al. Whole-body magnetic resonance imaging in paediatric Hodgkin lymphoma—evaluation of quantitative magnetic resonance metrics for nodal staging. Pediatr Radiol 2019; 49 (10) 1285-1298
  • 75 Institute of Cancer Research, Cancer Research UK Registry : Soft tissue sarcoma statistics. 2020 . Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/soft-tissue-sarcoma. Accessed September 11, 2020
  • 76 Institute of Cancer Research, Cancer Research UK Registry: Bone sarcoma statistics. 2020 . Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bone-sarcoma#heading-Zero. Accessed September 11, 2020
  • 77 Gorelik N, Reddy SMV, Turcotte RE. et al. Early detection of metastases using whole-body MRI for initial staging and routine follow-up of myxoid liposarcoma. Skeletal Radiol 2018; 47 (03) 369-379
  • 78 Stevenson JD, Watson JJ, Cool P. et al. Whole-body magnetic resonance imaging in myxoid liposarcoma: a useful adjunct for the detection of extra-pulmonary metastatic disease. Eur J Surg Oncol 2016; 42 (04) 574-580
  • 79 Bosma SE, Vriens D, Gelderblom H, van de Sande MAJ, Dijkstra PDS, Bloem JL. 18F-FDG PET-CT versus MRI for detection of skeletal metastasis in Ewing sarcoma. Skeletal Radiol 2019; 48 (11) 1735-1746
  • 80 Jurik AG, Hansen BH, Weber K. Solitary enchondromas—diagnosis and surveillance: Danish guidelines. Radiologe 2020; April 22 (Epub ahead of print)
  • 81 Frebourg T, Bajalica Lagercrantz S, Oliveira C, Magenheim R, Gareth Evans D. European Reference Network GENTURIS. Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes. Eur J Hum Genet 2020; 28 (10) 1379-1386
  • 82 Kumar P, Gill RM, Phelps A, Tulpule A, Matthay K, Nicolaides T. Surveillance screening in Li-Fraumeni syndrome: raising awareness of false positives. Cureus 2018; 10 (04) e2527
  • 83 Ahlawat S, Blakeley JO, Langmead S, Belzberg AJ, Fayad LM. Current status and recommendations for imaging in neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Skeletal Radiol 2020; 49 (02) 199-219
  • 84 Demehri S, Belzberg A, Blakeley J, Fayad LM. Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. AJNR Am J Neuroradiol 2014; 35 (08) 1615-1620
  • 85 Liu Y, Jordan JT, Bredella MA. et al. Correlation between NF1 genotype and imaging phenotype on whole-body MRI: NF1 radiogenomics. Neurology 2020; 94 (24) e2521-e2531
  • 86 Kratz CP, Franke L, Peters H. et al. Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. Br J Cancer 2015; 112 (08) 1392-1397
  • 87 Vanbinst A-M, Brussaard C, Vergauwen E. et al. A focused 35-minute whole body MRI screening protocol for patients with von Hippel-Lindau disease. Hered Cancer Clin Pract 2019; 17 (01) 22
  • 88 Adashek JJ, Kato S, Lippman SM, Kurzrock R. The paradox of cancer genes in non-malignant conditions: implications for precision medicine. Genome Med 2020; 12 (01) 16
  • 89 Meyer HJ, Emmer A, Kornhuber M, Surov A. Histogram analysis derived from apparent diffusion coefficient (ADC) is more sensitive to reflect serological parameters in myositis than conventional ADC analysis. Br J Radiol 2018; 91 (1085): 20170900
  • 90 Padhani AR, Tunariu N. Metastasis reporting and data system for prostate cancer in practice. Magn Reson Imaging Clin N Am 2018; 26 (04) 527-542
  • 91 Schwartzberg L, Kim ES, Liu D, Schrag D. Precision oncology: who, how, what, when, and when not?. Am Soc Clin Oncol Educ Book 2019; 37: 160-169
  • 92 Latifoltojar A, Punwani S, Lopes A. et al. Whole-body MRI for staging and interim response monitoring in paediatric and adolescent Hodgkin's lymphoma: a comparison with multi-modality reference standard including 18F-FDG-PET-CT. Eur Radiol 2019; 29 (01) 202-212
  • 93 Hillengass J, Usmani S, Rajkumar SV. et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol 2019; 20 (06) e302-e312
  • 94 National Institute for Health and Care Excellence, Metastatic malignant disease of unknown primary origin in adults: diagnosis and management. Available at: https://www.nice.org.uk/Guidance/CG104. Accessed September 11, 2020
  • 95 deSouza NM, Liu Y, Chiti A. et al. Strategies and technical challenges for imaging oligometastatic disease: recommendations from the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer 2018; 91: 153-163
  • 96 Lecouvet FE, Oprea-Lager DE, Liu Y. et al. Use of modern imaging methods to facilitate trials of metastasis-directed therapy for oligometastatic disease in prostate cancer: a consensus recommendation from the EORTC Imaging Group. Lancet Oncol 2018; 19 (10) e534-e545
  • 97 Taylor SA, Mallett S, Miles A. et al. Whole-body MRI compared with standard pathways for staging metastatic disease in lung and colorectal cancer: the Streamline diagnostic accuracy studies. Health Technol Assess 2019; 23 (66) 1-270
  • 98 Taylor SA, Mallett S, Beare S. Streamline investigators. et al. Diagnostic accuracy of whole-body MRI versus standard imaging pathways for metastatic disease in newly diagnosed colorectal cancer: the prospective Streamline C trial. Lancet Gastroenterol Hepatol 2019; 4 (07) 529-537
  • 99 Padhani AR, Petralia G, Sanguedolce F. Magnetic resonance imaging before prostate biopsy: time to talk. Eur Urol 2016; 69 (01) 1-3
  • 100 George AK, Hartman C, Kavoussi LR. Robotic partial nephrectomy: the Will Rogers surgical effect. Eur Urol 2016; 69 (01) 7-8
  • 101 Bass EJ, Orczyk C, Grey A. et al. Targeted biopsy of the prostate: does this result in improvement in detection of high-grade cancer or the occurrence of the Will Rogers phenomenon?. BJU Int 2019; 124 (04) 643-648
  • 102 Yoshida S, Takahara T, Ishii C. et al. METastasis reporting and data system for prostate cancer as a prognostic imaging marker in castration-resistant prostate cancer. Clin Genitourin Cancer 2020; 18 (04) e391-e396
  • 103 Koutoulidis V, Fontara S, Terpos E. et al. Quantitative diffusion-weighted imaging of the bone marrow: an adjunct tool for the diagnosis of a diffuse MR imaging pattern in patients with multiple myeloma. Radiology 2017; 282 (02) 484-493
  • 104 O'Flynn EAM, Blackledge M, Collins D. et al. Evaluating the diagnostic sensitivity of computed diffusion-weighted MR imaging in the detection of breast cancer. J Magn Reson Imaging 2016; 44 (01) 130-137
  • 105 Woolf DK, Padhani AR, Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care?. Ann Oncol 2015; 26 (06) 1048-1057
  • 106 Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 2011; 261 (03) 700-718
  • 107 Petralia G, Padhani A, Summers P. et al. Whole-body diffusion-weighted imaging: is it all we need for detecting metastases in melanoma patients?. Eur Radiol 2013; 23 (12) 3466-3476
  • 108 Dalili D, Padhani AR, Grimm R. Quantitative WB-MRI with ADC histogram analysis for response assessment in diffuse bone disease. Magnetom FLASH 2017; 69: 32-37
  • 109 Winfield JM, Poillucci G, Blackledge MD. et al. Apparent diffusion coefficient of vertebral haemangiomas allows differentiation from malignant focal deposits in whole-body diffusion-weighted MRI. Eur Radiol 2018; 28 (04) 1687-1691
  • 110 Cheng L, Tunariu N, Collins DJ. et al. Response evaluation in mesothelioma: Beyond RECIST. Lung Cancer 2015; 90 (03) 433-441
  • 111 Donners R, Blackledge M, Tunariu N, Messiou C, Merkle EM, Koh DM. Quantitative whole-body diffusion-weighted mr imaging. Magn Reson Imaging Clin N Am 2018; 26 (04) 479-494
  • 112 Perez-Lopez R, Mateo J, Mossop H. et al. Diffusion-weighted imaging as a treatment response biomarker for evaluating bone metastases in prostate cancer: a pilot study. Radiology 2017; 283 (01) 168-177
  • 113 Zugni F, Padhani AR, Koh DM, Summers PE, Bellomi M, Petralia G. Whole-body magnetic resonance imaging (WB-MRI) for cancer screening in asymptomatic subjects of the general population: review and recommendations. Cancer Imaging 2020; 11 ;20(1): 34
  • 114 Blackledge MD, Collins DJ, Koh DM, Leach MO. Rapid development of image analysis research tools: bridging the gap between researcher and clinician with pyOsiriX. Comput Biol Med 2016; 69: 203-212
  • 115 Koh D, Tunariu N, Blackledge M, Collins DJ. Competing technology for PET/computed tomography: diffusion-weighted magnetic resonance imagingPET Clin. 2013; 8 (03) 259-277
  • 116 Daldrup-Link H. Artificial intelligence applications for pediatric oncology imaging. Pediatr Radiol 2019; 49 (11) 1384-1390
  • 117 Sala E, Mema E, Himoto Y. et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 2017; 72 (01) 3-10
  • 118 Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278 (02) 563-577
  • 119 Kang J, Rancati T, Lee S. et al. Machine learning and radiogenomics: lessons learned and future directions. Front Oncol 2018; 8: 228
  • 120 Men K, Zhang T, Chen X. et al. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Phys Med 2018; 50: 13-19
  • 121 Müller J, Ferraro DA, Muehlematter UJ. et al. Clinical impact of 68Ga-PSMA-11 PET on patient management and outcome, including all patients referred for an increase in PSA level during the first year after its clinical introduction. Eur J Nucl Med Mol Imaging 2019; 46 (04) 889-900