CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2022; 57(01): 082-088
DOI: 10.1055/s-0040-1718511
Artigos Originais
Joelho

Knee MR Using a Body Coil is Equivalent to CT in Measuring the TT-TG Distance: Removing the Systematic Bias[*]

Artikel in mehreren Sprachen: português | English
1   Departamento de Radiologia, Grupo Fleury Medicina e Saúde, São Paulo, SP, Brasil
,
1   Departamento de Radiologia, Grupo Fleury Medicina e Saúde, São Paulo, SP, Brasil
,
1   Departamento de Radiologia, Grupo Fleury Medicina e Saúde, São Paulo, SP, Brasil
,
1   Departamento de Radiologia, Grupo Fleury Medicina e Saúde, São Paulo, SP, Brasil
,
1   Departamento de Radiologia, Grupo Fleury Medicina e Saúde, São Paulo, SP, Brasil
,
1   Departamento de Radiologia, Grupo Fleury Medicina e Saúde, São Paulo, SP, Brasil
› Institutsangaben

Abstract

Objective To compare magnetic resonance imaging (MRI) using a body coil with computed tomography (CT) in measuring the tibial tubercle-trochlear groove distance (TT-TG) and the patellar tendon-cartilaginous trochlear groove (PT-CTG) distances, and evaluate interrater reliability.

Methods The study group consisted of 34 knees from 17 asymptomatic subjects with no history of knee pathology, trauma or surgery. A low-dose CT scan and an axial T1-weighted MRI sequence of the knees were performed with rigorous standardization of the positioning with full extension of the knees and parallel feet. Two musculoskeletal radiologists performed the measurements independently. The reliability of the TT-TG and PT-CTG distances on CT (17.1 ± 4.2 mm and 17.3 ± 4.2 mm) and of MRI (16.2 ± 3.7 mm and 16.5 ± 4.1 mm) was assessed by intraclass correlation coefficient (ICC [2,1]) and Bland-Altman graphs, as well as the interrater reliability for both methods.

Results Good reliability and agreement was observed between CT and MRI measurements for TT-TG and PT-CTG, with an ICC of 0.774 (p < 0.001) and 0.743 (p < 0.001), respectively, and no systematic bias was observed. The interrater reliability was excellent for all measurements on both imaging methods.

Conclusion This was the first study that compared MRI using a body coil with CT in measuring the TT-TG distance, with the potential clinical implication that the CT in this clinical setting could be avoided.

Financial Support

There was no financial support from public, commercial, or not-for-profit sources.


* Work developed at the Department of Radiology, Grupo Fleury Medicina e Saúde, São Paulo, SP, Brazil.




Publikationsverlauf

Eingereicht: 24. April 2020

Angenommen: 06. Juli 2020

Artikel online veröffentlicht:
22. März 2021

© 2021. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Thakkar RS, Del Grande F, Wadhwa V. et al. Patellar instability: CT and MRI measurements and their correlation with internal derangement findings. Knee Surg Sports Traumatol Arthrosc 2016; 24 (09) 3021-3028
  • 2 Waterman BR, Belmont Jr PJ, Owens BD. Patellar dislocation in the United States: role of sex, age, race, and athletic participation. J Knee Surg 2012; 25 (01) 51-57
  • 3 Camp CL, Stuart MJ, Krych AJ. et al. CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med 2013; 41 (08) 1835-1840
  • 4 Ho CP, James EW, Surowiec RK. et al. Systematic technique-dependent differences in CT versus MRI measurement of the tibial tubercle-trochlear groove distance. Am J Sports Med 2015; 43 (03) 675-682
  • 5 Tan SHS, Lim BY, Chng KSJ. et al. The Difference between Computed Tomography and Magnetic Resonance Imaging Measurements of Tibial Tubercle–Trochlear Groove Distance for Patients with or without Patellofemoral Instability: A Systematic Review and Meta-Analysis. J Knee Surg 2020; 33 (08) 768-776
  • 6 Smith TO, Davies L, Toms AP, Hing CB, Donell ST. The reliability and validity of radiological assessment for patellar instability. A systematic review and meta-analysis. Skeletal Radiol 2011; 40 (04) 399-414
  • 7 Aarvold A, Pope A, Sakthivel VK, Ayer RV. MRI performed on dedicated knee coils is inaccurate for the measurement of tibial tubercle trochlear groove distance. Skeletal Radiol 2014; 43 (03) 345-349
  • 8 Hinckel BB, Gobbi RG, Filho EN. et al. Are the osseous and tendinous-cartilaginous tibial tuberosity-trochlear groove distances the same on CT and MRI?. Skeletal Radiol 2015; 44 (08) 1085-1093
  • 9 Anley CM, Morris GV, Saithna A, James SL, Snow M. Defining the Role of the Tibial Tubercle-Trochlear Groove and Tibial Tubercle-Posterior Cruciate Ligament Distances in the Work-up of Patients With Patellofemoral Disorders. Am J Sports Med 2015; 43 (06) 1348-1353
  • 10 Marquez-Lara A, Andersen J, Lenchik L, Ferguson CM, Gupta P. Variability in patellofemoral alignment measurements on MRI: Influence of knee position. AJR Am J Roentgenol 2017; 208 (05) 1097-1102
  • 11 Zou GY. Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. Stat Med 2012; 31 (29) 3972-3981
  • 12 Ait-Ali L, Andreassi MG, Foffa I, Spadoni I, Vano E, Picano E. Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart 2010; 96 (04) 269-274
  • 13 Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2 (01) 19-26
  • 14 Wilcox JJ, Snow BJ, Aoki SK, Hung M, Burks RT. Does landmark selection affect the reliability of tibial tubercle-trochlear groove measurements using MRI?. Clin Orthop Relat Res 2012; 470 (08) 2253-2260
  • 15 Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 2016; 15 (02) 155-163
  • 16 Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S. The position of the tibia tubercle in 0°-90° flexion: comparing patients with patella dislocation to healthy volunteers. Knee Surg Sports Traumatol Arthrosc 2014; 22 (10) 2396-2400
  • 17 Pandit S, Frampton C, Stoddart J, Lynskey T. Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop 2011; 35 (12) 1799-1803
  • 18 Sobhanardekani M, Sobhan MR, Nafisi Moghadam R, Nabavinejad S, Razavi Ratki SK. The Normal Value of Tibial Tubercle Trochlear Groove Distance in Patients With Normal Knee Examinations Using MRI. Acta Med Iran 2017; 55 (09) 573-577
  • 19 Schoettle PB, Zanetti M, Seifert B, Pfirrmann CWA, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 2006; 13 (01) 26-31
  • 20 Galland O, Walch G, Dejour H, Carret JP. An anatomical and radiological study of the femoropatellar articulation. Surg Radiol Anat 1990; 12 (02) 119-125