CC BY-NC-ND 4.0 · Organic Materials 2020; 02(03): 240-247 DOI: 10.1055/s-0040-1715564
Synthesis and Characterization of AIE-Active B–N-Coordinated Phenalene Complexes
a
Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
,
b
Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
,
c
Department of Materials Science and Engineering, University of Toronto, Toronto, Canada
,
d
Chair of Inorganic Molecular Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
,
a
Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
› Institutsangaben
Funding Information We thank the European Union's Horizon 2020 research and innovation program under grant agreement No. 696656 (Graphene Flagship Core2), ERC Grant on T2DCP, the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden (cfaed)” and EnhanceNano (No. 391979941) as well as the European Social Fund and the Federal State of Saxony (ESF Project “GRAPHD”, TU Dresden) for financial support. J. Liu is grateful for the startup funding from The University of Hong Kong and the funding support from ITC to the SKL.
Abstract
Organoboron compounds provide a new line to tune the electronic structures of π-conjugated molecules, which is critical to the development of new organic semiconductor materials. In this work, we demonstrate the synthesis of two novel boron–nitrogen (B−N) coordinated phenalene complexes (BNP-PX and BNP-PA ) by employing BN phenalene (BNP ) as the acceptor unit and phenoxazine/phenylphenazine groups as the donors. Based on single-crystal X-ray analysis, both BNP-PX and BNP-PA possess highly twisted conformations with the dihedral angles of 76.6 ° and 70.5 °, respectively. The photophysical properties of BNP-PX and BNP-PA are elucidated through UV-vis absorption, fluorescence spectroscopy, and theoretical calculations. In addition, BNP-PX exhibits a large Stokes shift (8,033 cm−1 ) and excellent aggregated-induced emission behavior. The red organic light-emitting diode device was fabricated based on compound BNP-PX , manifesting its promising application in organic optoelectronic devices.
Key words
donor–acceptor -
BN-coordinated compounds -
large Stokes shift -
AIE effect -
OLED device
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1715564 .
Publikationsverlauf
Eingereicht: 25. März 2020
Angenommen: 13. Juni 2020
Artikel online veröffentlicht: 30. September 2020
© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Wu Y,
Zhu W.
Chem. Soc. Rev. 2013; 42: 2039
1b
Zhang J,
Xu W,
Sheng P,
Zhao G,
Zhu D.
Acc. Chem. Res. 2017; 50: 1654
1c
Zhang J,
Jin J,
Xu H,
Zhang Q,
Huang W.
J. Mater. Chem. C Mater. Opt. Electron. Devices 2018; 6: 3485
1d
Zhang G,
Zhao J,
Chow PC. Y,
Jiang K,
Zhang J,
Zhu Z,
Zhang J,
Huang F,
Yan H.
Chem. Rev. 2018; 118: 3447
1e
Li Y,
Liu J.-Y,
Zhao Y.-D,
Cao Y.-C.
Mater. Today 2017; 20: 258
1f
Geng H,
Zheng X,
Shuai Z,
Zhu L,
Yi Y.
Adv. Mater. 2015; 27: 1443
1g
Richter M,
Fu Y,
Dmitrieva E,
Weigand JJ,
Popov A,
Berger R,
Liu J,
Feng X.
ChemPlusChem 2019; 84: 613
2a
Cao X,
Zhang D,
Zhang S,
Tao Y,
Huang W.
J. Mater. Chem. C Mater. Opt. Electron. Devices 2017; 5: 7699
2b
Ledwon P.
Org. Electron. 2019; 75: 105422
2c
Tao Y,
Yuan K,
Chen T,
Xu P,
Li H,
Chen R,
Zheng C,
Zhang L,
Huang W.
Adv. Mater. 2014; 26: 7931
3a
Hong Y,
Lam JW. Y,
Tang BZ.
Chem. Commun. (Camb.) 2009; (29) 4332
3b
Hong Y,
Lam JW. Y,
Tang BZ.
Chem. Soc. Rev. 2011; 40: 5361
4a
Li H,
Li BS,
Tang BZ.
Chem. Asian J. 2019; 14: 674
4b
Wang H,
Zhao E,
Lam JW. Y,
Tang BZ.
Mater. Today 2015; 18: 365
5a
Fu Y,
Qiu F,
Zhang F,
Mai Y,
Wang Y,
Fu S,
Tang R,
Zhuang X,
Feng X.
Chem. Commun. (Camb.) 2015; 51: 5298
5b
Shen P,
Zhuang Z,
Zhao Z,
Tang BZ.
J. Mater. Chem. C Mater. Opt. Electron. Devices 2018; 6: 11835
5c
Wan W.-M,
Tian D,
Jing Y.-N,
Zhang X.-Y,
Wu W,
Ren H,
Bao H.-L.
Angew. Chem. Int. Ed. 2018; 57: 15510
6a
Wang X,
Zhang F,
Liu J,
Tang R,
Fu Y,
Wu D,
Xu Q,
Zhuang X,
He G,
Feng X.
Org. Lett. 2013; 15: 5714
6b
Zhang W,
Zhang F,
Tang R,
Fu Y,
Wang X,
Zhuang X,
He G,
Feng X.
Org. Lett. 2016; 18: 3618
6c
Zhang W,
Fu Y,
Qiang P,
Hunger J,
Bi S,
Zhang W,
Zhang F.
Org. Biomol. Chem. 2017; 15: 7106
6d
Wang X,
Zhang F,
Gao J,
Fu Y,
Zhao W,
Tang R,
Zhang W,
Zhuang X,
Feng X.
J. Org. Chem. 2015; 80: 10127
6e
Wang X,
Zhang F,
Schellhammer KS,
Machata P,
Ortmann F,
Cuniberti G,
Fu Y,
Hunger J,
Tang R,
Popov AA,
Berger R,
Müllen K,
Feng X.
J. Am. Chem. Soc. 2016; 138: 11606
6f
Fu Y,
Zhang K,
Dmitrieva E,
Liu F,
Ma J,
Weigand JJ,
Popov AA,
Berger R,
Pisula W,
Liu J,
Feng X.
Org. Lett. 2019; 21: 1354
7a
Dou C,
Ding Z,
Zhang Z,
Xie Z,
Liu J,
Wang L.
Angew. Chem. Int. Ed. 2015; 54: 3648
7b
Wang T,
Dou C,
Liu J,
Wang L.
Chemistry 2018; 24: 13043
8a
Grant DJ,
Dixon DA.
J. Phys. Chem. A 2006; 110: 12955
8b
Blanksby SJ,
Ellison GB.
Acc. Chem. Res. 2003; 36: 255
9a
Mukundam V,
Sa S,
Kumari A,
Das R,
Venkatasubbaiah K.
J. Mater. Chem. C Mater. Opt. Electron. Devices 2019; 7: 12725
9b
Qiu F,
Zhang F,
Tang R,
Fu Y,
Wang X,
Han S,
Zhuang X,
Feng X.
Org. Lett. 2016; 18: 1398
9c
Morgan MM,
Nazari M,
Pickl T,
Rautiainen JM,
Tuononen HM,
Piers WE,
Welch GC,
Gelfand BS.
Chem. Commun. (Camb.) 2019; 55: 11095
9d
Pammer F,
Schepper J,
Glöckler J,
Sun Y,
Orthaber A.
Dalton Trans. 2019; 48: 10298
10
Uchida K,
Kubo T.
J. Synth. Org. Chem. Jpn. 2016; 74: 1069
11
Ishida N,
Narumi M,
Murakami M.
Helv. Chim. Acta 2012; 95: 2474
12a
Ren X,
Zhang F,
Luo H,
Liao L,
Song X,
Chen W.
Chem. Commun. (Camb.) 2020; 56: 2159
12b
Araneda JF,
Piers WE,
Heyne B,
Parvez M,
McDonald R.
Angew. Chem. Int. Ed. 2011; 50: 12214
13
Synthetic procedure for compound BNP-PX : In a 50 mL one-necked flask, compound 8 (153.5 mg, 0.32 mmol), alkynylborate (120.9 mg, 0.35 mmol), DPEPhos (16.3 mg, 0.03 mmol) and Pd(π-allyl)Cl (17.2 mg, 0.047 mmol) were charged under argon atmosphere. After three times vacuum-argon operation, degassed toluene (10 mL) was added into the flask under argon. Then the mixture was stirred at 60 °C for 12 h. Afterwards, the reaction mixture was concentrated under reduced pressure. The residue was then purified by chromatography on silica gel (CH2 Cl2 /iso-hexane = 1/1) to give product as red powder (167.8 mg, 91%). 1 H NMR (300 MHz, CD2 Cl2 ) δ 8.87 (dd, J = 5.5, 1.5 Hz, 1H), 8.67 (dd, J = 8.4, 1.5 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.47 (dd, J = 8.4, 5.5 Hz, 1H), 7.38 (d, J = 1.5 Hz, 2H), 7.35 (d, J = 1.3 Hz, 2H), 7.24 (s, 1H), 7.21 (t, J = 1.7 Hz, 1H), 7.18 (d, J = 1.5 Hz, 2H), 7.16 (s, 2H), 7.14 (dd, J = 3.2, 1.5 Hz, 2H), 7.12 (s, 3H), 7.10 (dd, J = 4.1, 2.1 Hz, 1H), 6.78 (dd, J = 7.9, 1.6 Hz, 2H), 6.71 (td, J = 7.6, 1.4 Hz, 2H), 6.58 (td, J = 7.7, 1.6 Hz, 2H), 5.86 (d, J = 1.4 Hz, 1H), 5.84 (d, J = 1.4 Hz, 1H). 11 B NMR (96 MHz, CD2 Cl2 ) δ 2.20. 13 C NMR (76 MHz, CD2 Cl2 ) δ 153.6, 150.8, 146.1, 144.3, 140.5, 137.4, 134.8, 134.5, 134.2, 133.0, 132.5, 131.2, 128.5, 128.3, 127.8, 127.7, 126.7, 125.8, 125.2, 124.0, 122.6, 122.5, 116.1, 113.8. HRMS (ACPI, m/z ): calcd for C41 H30 BN2 O+ [M + H]+ 577.2451, found 577.2447
14
Synthetic procedure for compound BNP-PA : In a 50 mL one-necked flask, compound 9 (59.9 mg, 0.11 mmol), alkynylborate (49.8 mg, 0.14 mmol), DPEPhos (13.0 mg, 0.024 mmol) and Pd(π-allyl)Cl (14.4 mg, 0.039 mmol) were charged under argon atmosphere. After three times vacuum-argon operation, degassed toluene (5 mL) was added into the flask under argon. Then the mixture was stirred at 60 °C for 12 h. After cooling down to room temperature, anhydrous methanol (15 mL) was added into the flask and some brown solid precipitated to the bottom. The solid was collected by filtration and then washed by MeOH. The dark brown to black solid (43.0 mg, 60%) can be used directly for further characterization. 1 H NMR (300 MHz, CD2 Cl2 ) δ 8.96 (dd, J = 8.4, 1.6 Hz, 1H), 8.92–8.84 (m, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.68 (t, J = 7.6 Hz, 3H), 7.60–7.51 (m, 2H), 7.46 (d, J = 7.7 Hz, 3H), 7.38 (d, J = 1.7 Hz, 2H), 7.35 (s, 2H), 7.25–7.17 (m, 4H), 7.15 (d, J = 5.9 Hz, 3H), 7.12 (d, J = 2.7 Hz, 5H), 6.30 (t, J = 7.5 Hz, 2H), 6.21 (t, J = 7.5 Hz, 2H), 5.71–5.64 (m, 2H), 5.57–5.49 (m, 2H). 11 B NMR (96 MHz, CD2 Cl2 ) δ –5.37. 13 C NMR (76 MHz, CD2 Cl2 ) δ 150.8, 146.2, 140.9, 140.3, 137.8, 137.0, 136.4, 134.5, 134.5, 134.0, 133.5, 131.8, 131.6, 131.5, 129.3, 128.8, 128.6, 128.3, 127.7, 127.6, 126.6, 125.8, 125.3, 122.5, 121.9, 121.3, 113.2, 112.9. HRMS (ACPI, m/z): calcd for C47 H34 BN3
+ [M]+ 651.2846, found 651.2845
15
Berski S,
Latajka Z,
Gordon AJ.
New J. Chem. 2011; 35: 89
16a
Janiak C.
J. Chem. Soc., Dalton Trans. 2000; 3885
16b
Hunter CA,
Sanders JK. M.
J. Am. Chem. Soc. 1990; 112: 5525
16c
Banerjee A,
Saha A,
Saha BK.
Cryst. Growth Des. 2019; 19: 2245
17
Sun L,
Zhang F,
Wang X,
Qiu F,
Xue M,
Tregnago G,
Cacialli F,
Osella S,
Beljonne D,
Feng X.
Chem. Asian J. 2015; 10: 709
18a
Lin JH,
Elangovan A,
Ho TI.
J. Org. Chem. 2005; 70: 7397
18b
Yang W,
Zhu W,
Zhou W,
Liu H,
Xu Y,
Fan J.
J. Fluoresc. 2012; 22: 1383
19
Anandhan K,
Cerón M,
Perumal V,
Ceballos P,
Gordillo-Guerra P,
Pérez-Gutiérrez E,
Castillo AE,
Thamotharan S,
Percino MJ.
RSC Advances 2019; 9: 12085
20a
Mei J,
Hong Y,
Lam JW. Y,
Qin A,
Tang Y,
Tang BZ.
Adv. Mater. 2014; 26: 5429
20b
Mei J,
Leung NL. C,
Kwok RT. K,
Lam JW. Y,
Tang BZ.
Chem. Rev. 2015; 115: 11718
21
Kong Y.-J,
Yan Z.-P,
Li S,
Su H.-F,
Li K,
Zheng Y.-X,
Zang S.-Q.
Angew. Chem. Int. Ed. 2020; 59: 5336